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This paper provides a comprehensive review of magneto-optical (MO) spectroscopy. In
the first place, different methods of MO measurements such as the Faraday effect, MO
Kerr effect, and Cotton-Mouton effect are briefly introduced. Next, macroscopic and
microscopic origin in magnetic materials is summarized. In the third part, measuring
techniques for MO spectroscopies are reviewed, with a particular reference to the
polarization modulation technique.
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1 INTRODUCTION

It is well known that light is not influenced by a static magnetic field in a vacuum. On the contrary,
light transmitted through materials or reflected by materials is influenced by a magnetic field or by
magnetization of materials. These phenomena are called the magneto-optical (MO) effect. In recent
years MO effects are utilized for not only optoelectronic devices but also as tools for investigating
physical properties and electronic structures of materials. Particularly, MO spectroscopy is important
for the latter purposes, since MO effects are originated from optical transitions in the spin-polarized
electronic structures of materials.

In the case of transmission geometry, there are two types of magnetic field application,
i.e., Faraday configuration in which a magnetic field is applied parallel to the propagation
direction of light, and Voigt configuration in which a magnetic field is applied perpendicular to
the light propagation.

MO effect in the Faraday configuration is called the Faraday effect, which causes rotation of light
polarization (Faraday rotation) and elliptically polarized light (MCD). MO effect in the Voigt
configuration is called the Cotton-Mouton effect, which causes magnetically induced birefringence.

MO effect in the reflection geometry is called the magneto-optical Kerr effect (MOKE). In
Figure 1, three cases of MOKE are illustrated. If themagnetization is normal to the reflection plane, it
is called the polar Kerr effect as shown in (a). If the magnetization lies in a plane, two cases exist;
i.e., the longitudinal Kerr effect with the magnetization in the plane of light incidence 2) and the
transverse Kerr effect with the magnetization perpendicular to the plane of incidence (c).

2 MACROSCOPIC AND MICROSCOPIC ORIGIN OF
MAGNETO-OPTICAL EFFECT IN MAGNETIC MATERIALS [1]

2.1 Dielectric Permittivity Tensor of Magnetized Material [2]
Light propagation in a continuous medium can be described in terms of Maxwell’s equation, and the
response of the medium may be described by the dielectric permittivity (or conductivity, in the case
of a metallic medium). We assume relative magnetic permeability μ as unity since the magnetic
moment cannot follow the vibration of the frequency of light.
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The dielectric permittivity is a quantity that provides a relation
between the electric displacement D and the electric field E as
described in Eq. 1.

D � ε0ϵ̂E (1)
Here ε0 is the dielectric permittivity of vacuum and ϵ̂ the

relative dielectric permittivity tensor as described in Eq. 2.

ϵ̂ � ⎡⎢⎢⎢⎢⎢⎣ εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤⎥⎥⎥⎥⎥⎦ (2)

Each element of the tensor is a complex as described in Eq. 3.

εij � εij
′ + iεij

″ (3)
In the following chapters, we also use an electric conductivity

tensor σ̂ that provides a relation between the electric current
density J and the electric field E as described in Eq. 4.

J � σ̂E (4)
The electric conductivity tensor can be described as Eq. 5.

σ̂ � ⎡⎢⎢⎢⎢⎢⎣ σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎤⎥⎥⎥⎥⎥⎦ (5)

Each component of σ̂ is complex and can be described as Eq. 6.

σ ij � σ ij
′ + iσ ij

″ (6)
There holds an equation between the components of σ̂ and ϵ̂ as

Eq. 7.

εij � δij + i
σ ij
ωϵ0

[SI] (7)

If the conductivity is given in CGS unit (s−1) the Eq. 7 can be
rewritten as Eq. 8.

εij � δij + i
σ ij
ω

[CGS] (8)

Here we assume an isotropic medium. Without a magnetic
field or without magnetization the dielectric permittivity tensor ε̂
can be expressed as Eq. 9.

ϵ̂ � ⎡⎢⎢⎢⎢⎢⎣ εxx 0 0
0 εxx 0
0 0 εxx

⎤⎥⎥⎥⎥⎥⎦ (9)

The introduction of a magnetization M along the light
propagation direction z causes uniaxial anisotropy to the
medium. Then the tensor components of Eq. 2 can be
described as Eq. 10.

εxx � εyy, εxy � −εyx, εxz � εyz � εzx � εzy � 0 (10)
Then the dielectric permeability tensor ε̂ under a uniaxial

magnetization, M along z can be expressed by using three tensor
elements as Eq. 11.

ϵ̂(M) � ⎡⎢⎢⎢⎢⎢⎣ εxx(M) εxy(M) 0
−εxy(M) εxx(M) 0

0 0 εzz(M)
⎤⎥⎥⎥⎥⎥⎦ (11)

According to Onsager, the diagonal elements are an even
function of M and the off-diagonal elements are an odd
function of M.

It will be revealed in the following sections that the off-
diagonal element εxy(M) introduces the Faraday effect and
MO-Kerr effect while the difference between diagonal
elements εxx(M) and εzz(M) Cotton-Mouton effect.

2.2 Macroscopic Origin of Magneto-Optical
Effect [3, 4]
2.2.1 Faraday Effect
Figure 2 provides schematic illustrations of how Faraday rotation
and Faraday ellipticity occur in the medium when a
magnetization vector is perpendicular to the plane. In this
figure, light propagates vertically to the surface toward the
backside, and straight arrows represent electric field vectors of
light.

As shown in 1) the electric field vector of the linearly
polarized light can be decomposed into two circularly
rotating electric field vectors, namely right-circularly
polarized light (RCP) and left-circularly polarized light
(LCP). If phases of RCP and LCP are different after traveling
through a medium of l in length as shown in (b), the trajectory of
light composed of two circularly polarized lights becomes a

FIGURE 1 | Three types of experimental geometry for MOKE measurement. (A) polar Kerr effect, (B) longitudinal Kerr effect, and (C) transverse Kerr effect.
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linearly polarized light which is rotated from the incident light
vector. The rotation angle θF is given by

θF � −(θR − θL)/2 � −Δθ/2 (12)
where θR and θL are phases of RCP and LCP, respectively. On the
other hand, if amplitudes of RCP and LCP are different the
trajectory of the composed light vector becomes elliptically
polarized light, as illustrated in (c). The angle of ellipticity ηF
is given by

ηF � tan−1((ER − EL)/(ER + EL)) (13)
where ER and EL are amplitudes of RCP and LCP, respectively. In
general RCP and LCP suffer differences in both phase and
amplitude, which causes an elliptically polarized light with a
principal axis rotated from the incident light vector as
shown in (d).

The phase difference can be expressed using refractive indices
n+ and n− for RCP and LCP respectively. Therefore, rotation can
be expressed by Eq. 14.

θF � −Δθ/2 � −ωl(n+ − n−)/c � −πΔnl/λ (14)
where Δn � n+ − n− is the difference between refractive indices
for RCP and LCP.

On the other hand, ellipticity or circular dichroism appears if
there is a difference between extinction coefficients for RCP
and LCP.

ηF ≈
exp(−ωκ+l/c) − exp(−ωκ−l/c)
exp(−ωκ+l/c) + exp(−ωκ−l/c) ≈ − πΔκl

λ
(15)

where Δκ � κ+ − κ− is the difference between extinction
coefficients for RCP and LCP.

We define complex rotation as
ΦF � θF + iηF ≈ − π

λ (Δn + iΔκ)l � −πΔN̂l/λ,where ΔN̂ is a
difference between complex refractive indices for RCP and LCP.

In the following, the Faraday rotation and ellipticity are
described in terms of the dielectric permittivity tensor of Eq. 11.

Light propagation through the medium with the dielectric
permittivity tensor ε̂ can be analyzed using Maxell’s equation.

rotrotE � ε̂ε0
z2

zt2
E (16)

We assume that the time- and location-dependence of the
electric field and the magnetic field are expressed by the form of
exp{−iω(t − N̂z/c)}. Here the light propagation direction is taken
as the z-axis and N̂ is the complex refractive constant expressed
by N̂ � n + iκ. Then Eq. 16 can be rewritten as Eq. 17.

N̂
2
E − ε̂E � 0 (17)

The secular equation is∣∣∣∣∣∣∣∣∣∣∣∣
N̂

2 − εxx −εxy 0

εxy N̂
2 − εxx 0

0 0 −εzz

∣∣∣∣∣∣∣∣∣∣∣∣ � 0 (18)

The eigenvalues of the equation are obtained by

(N̂2 − εxx)2 + ε2xy � 0

The solution is

N̂
2

± � εxx ± iεxy (19)
where eigenvalues N̂± are complex refractive indices for RCP (+)
and LCP (-), respectively.

The electric field vectors corresponding to N̂+ and N̂− are RCP
and LCP, respectively. Note that if εxy is zero, optical response is
the same for RCP and LCP, meaning that the Faraday effect does
not occur.

The difference between complex refractive indices ΔN̂
between RCP and LCP can be expressed as

ΔN̂ �
��������
εxx + iεxy

√
−

��������
εxx − iεxy

√
� iεxy/ ���

εxx
√

(20)

The complex rotation ΦF can be rewritten as

FIGURE 2 | Origin of Faraday rotation and Faraday ellipticity (Magnetic field is applied perpendicular to the surface of the paper (A) Linearly polarized (LP) light can
be decomposed to right circularly polarized (RCP) and left circularly polarized (LCP) lights (B) When the phase of the RCP wave advances faster than that of the LCP
wave, composed polarization of the light transmitted three the medium is LP rotated from the incident LP. (C)When the amplitude of the RCP wave is larger than that of
the LCP wave, composed polarization shows a trajectory of an ellipse. (D)When the amplitude and phase of RCP and LCP are different, the trajectory becomes an
ellipse with the principal axis inclined.
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ΦF � −πΔN̂l/λ � −iπεxyl/ ���
εxx

√
(21)

Then Faraday rotation θF and Faraday ellipticity ηF are
expressed using refractive index n and extinction coefficient κ
as Eq. 22.

θF � −(πl/λ) · (κεxy′ − nεxy
″ )/(n2 + κ2) (22)

ηF � −(πl/λ) · (nεxy′ + κεxy
″ )/(n2 + κ2)

Here we used a formula εxx � N̂
2 � (n + iκ)2.

If we consider a transparent medium, the extinction coefficient
κ is zero, then Eq. 22 becomes very simple as

θF � −(πl/nλ)εxy″ and ηF � −(πl/nλ)εxy′

2.2.2 Polar Kerr Effect
We assume the light beam comes through a vacuum. Using
electromagnetic theory, the Fresnel coefficient (complex
amplitude reflectance) r̂± for an incident beam of RCP (+)
and LCP (-) can be written by Eq. 23.

r̂± � (N̂± − 1)/(N̂± + 1) (23)
We assume r̂+ � r+exp(−iθ+) and r̂− � r−exp(−iθ−) as

Fresnel coefficients for RCP and LCP, respectively.
The polar Kerr rotation θK and polar Kerr ellipticity are

written as

θK � −(θ+ − θ−)/2 � −Δθ/2 (24)
ηK � (r+ − r−)/(r+ + r−) � Δr/2r

Then complex Kerr rotation ΦK � θK + iηK is written using
complex Fresnel coefficient as

ΦK � −Δθ/2 + iΔr/2r � −iΔr̂/2r̂ (25)
where r̂ � (r+ + r−)/2 and Δr̂ � r̂+ − r̂−.

From Eq. 25–23 we can write complex Kerr rotation by Eq. 26

ΦK � −εxy/{(1 − εxx) ���
εxx

√ } (26)
This equation suggests that Kerr rotation is enhanced when

the denominator takes a small value, i.e., εxx � 1 or εxx � 0. This
phenomenon occurs in PtMnSb, in which Kerr rotation shows a
peak value as large as 2 deg for the photon energy of 1.75eV,
where the real part of εxx crosses zero due to plasma resonance as
shown in Supplementary Figure S1 [5].

This equation provides θK and ηK as follows

θK � n(1 − n2 + 3κ2)εxy′ + κ(1 − 3n2 + κ2)εxy″
(n2 + κ2){(1 − n2 + κ2)2 + 4n2κ2} (27)

ηK � −κ(1 − 3n2 + κ2)εxy′ + n(1 − n2 + 3κ2)εxy″
(n2 + κ2){(1 − n2 + κ2)2 + 4n2κ2}

2.2.3 Longitudinal Kerr Effect
We assume that the light is incident with an angle of incidence φ0 to
the normal of themedium and proceed in themediumwith an angle

φ2. Magnetization is in the plane of the surface and the incident
plane.When the p-component is incident, the reflected beam begins
to show an s-component in addition to the p-component due to the
existence of magnetization. The induced s-component is not in
phase with the p-component resulting in elliptically polarized light
with the principal axis rotated from the incident beam. A similar
effect occurs for incident s-component as well, Complex Kerr
rotation ΦK is given by

tanΦK � rsp/rpp (28)
where rsp and rpp are given by

rsp � εxy cosφ0 sinφ2���
εxx

√
cosφ2( ���

εxx
√

cosφ2 + cosφ0)( ���
εxx

√
cosφ0 + cosφ2)

(29)
rpp �

���
εxx

√
cosφ0 − cosφ2���

εxx
√

cosφ0 + cosφ2

Snell’s law holds between the angle of incidence φ0 and the
angle of refraction φ2.

sinφ0/sinφ2 �
���
εxx

√
(30)

where φ0 is real and φ2 is complex.

2.2.4 Transverse Kerr Effect
When the magnetization vector is vertical to the plane of
incidence, the incident s-polarization is subjected to no effect,
while incident p-polarization is subjected to a change of reflection
intensity. No rotation of polarization occurs for this
configuration.

rpp � ε2xx cosφ0 + (εxx cosφ2 − εxy sinφ2)
ε2xx cosφ0 + (εxx cosφ2 + εxy sinφ2) (31)

The reflectivity of intensity is proportional to |rpp|2.
Magnetization influences rpp through εxy.

2.2.5 Cotton-Mouton Effect
The cotton-Mouton effect is a magnetically induced birefringence
in the Voigt configuration. Magnetization vector M is
perpendicular to the light propagation. The existence of M
induces uniaxial anisotropy along the magnetization direction.
Assuming the light propagation direction as x, Maxwell’s Eq. 16
leads to the secular Eq. 32

{εxx(εxx −N2 + ε2xy)}(εzz −N2) � 0 (32)
We get two eigenvalues N1 and N2 as follows.

N2
1 � εxx + ε2xy/εxx (33)

N2
2 � εxx

Solutions corresponding toN1 and N2 are extraordinary waves
and ordinary waves, respectively, and give rise to optical
retardation δ � 2π(N1 −N2)/λ
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2.3 Microscopic Origin of Magneto-Optical
Effect
2.3.1 Dielectric Permittivity and Electric Polarization
The electric displacement D in a medium and the electric field E
can be related by

D � ε̂ε0E � ε0E + P (34)
where p is the electrical polarization which is related by

P � ε0χ̂E (35)
Therefore, dielectric permittivity can be expressed in terms of

electric polarizability as

ε̂ � 1 + χ̂ (36)
Electric polarization P is the sum of electric dipole vectors in

unit volume. Assuming the density of dipoles as n, the charges as
q and -q and displacement by electric field E as u, P is expressed as

P � nqu (37)

2.3.2 Dielectric Permittivity Derived by The Classical
Equation of Motion
As explained in Section 2 2 magneto-optical effect is caused by
the off-diagonal element εxy of the dielectric permittivity tensor ε̂.

In the following, we obtain the tensor elements from an
equation of motion for a charged particle with mass m and
charge q.

m
z2u
zt

+mγ
zu
zt

+mω2
0u � q(E + zu

zt
× B) (38)

Here γ is a probability of scattering as defined by γ � 1/τ,
where τ is a scattering lifetime and mω2

0u is a restoring force,
where ω0 is a resonance frequency of the system. The right side
represents Lorentz force, where B=(0, 0, B) is the magnetic field
along z-axis.

Substituting E � E0 exp(−iωt) and u � u0 exp(−iωt) to Eq. 38
we obtain

m(ω2 + iωγ − ω2
0)x − iωqBy � −qEx (39)

iωqBx +m(ω2 + iωγ − ω2
0)y � −qEy

m(ω2 + iωγ − ω2
0)z � −qEz

where x, y, and z are components of vector u in the Cartesian
coordinate.

Substituting solutions of x, y, and z into Eq. 37 we obtain
polarizability tensor elements as

P � ε0χ̂E � ε0⎛⎜⎜⎝ χxx χxy 0
−χxy χxx 0
0 0 χzz

⎞⎟⎟⎠E

where tensor elements of χ̂ are given by Eq. 40.

χxx(ω) � −nq
2

mε0
· ω2 + iωγ − ω2

0(ω2 + iωγ − ω2
0)2 − ω2ω2

c

χxy(ω) � −nq
2

mε0
· iωωc(ω2 + iωγ − ω2

0)2 − ω2ω2
c

(40)

χzz(ω) � −nq
2

mε0
· 1
ω2 + iωγ − ω2

0

Here ωc � |qB/m| is the cyclotron frequency of charged carrier
in the magnetic field B.

Using relation 36) the dielectric tensor elements are given by
Eq. 41.

εxx(ω) � 1 − nq2

mε0
· ω2 + iωγ − ω2

0(ω2 + iωγ − ω2
0)2 − ω2ω2

c

εxy(ω) � −nq
2

mε0
· iωωc(ω2 + iωγ − ω2

0)2 − ω2ω2
c

(41)

εzz(ω) � 1 − nq2

mε0
· 1
ω2 + iωγ − ω2

0

In the following, three cases are discussed (A) B = 0, (B) B =
0 and ω0 � 0, (C) B ≠ 0 and ω0 � 0.

A) Without magnetic field: Lorentz formula

Eq. 41 becomes simple when B = 0 (ωc � 0) since the off-
diagonal term vanishes. If the real and imaginary parts of the
permittivity are expressed separately as

εxx′ (ω) � 1 − nq2

mε0
· 1(ω2 − ω2

0)2 + ω2γ2
(42)

εxx″(ω) � nq2

mε0
· ωγ(ω2 − ω2

0)2 + ω2γ2

Figure 3A shows a schematic illustration of spectra for εxx′ (ω)
and εxx″ (ω), the spectral shape of which is dispersion-type and
bell-type, respectively.

B) Withoutmagneticfield andwithout restoring force:Drude formula

If we consider the free carrier motion without magnetic field B
andwithout restoring force, we can assumeωc � 0 andω0 � 0. Then
the real and imaginary parts of the permittivity are expressed by

εxx′ (ω) � 1 − nq2

mε0
· 1
ω2 + γ2

(43)

εxx″ (ω) � nq2

mε0
· γ

ω2 + γ2

Eq. 43 are typical Drude formulas and spectra for εxx′ (ω) and
εxx″ (ω) are shown in Figure 3B. The real part of the permittivity
takes a large negative value for ω → 0 and crosses zero at the

plasma frequency ω′
p �

�������
nq2

mε0
− γ2

√
and tends to 1 for ω → ∞. For

γ → 0 the free electron plasma frequency is given by ωp �
���
nq2

mε0

√
.

In real metals the first term of εxx′ (ω) in Eq. 43 is not unity but
should be replaced by ε∞ introduced by inter-band transitions,

then ωp �
����
nq2

mε0ε∞

√
.
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C) With non-zero magnetic field and without restoring force:
Magneto-plasma resonance and Hall effect

εxx(ω) � 1 − nq2

mε0
· ω + iγ

ω{(ω + iγ)2 − ω2
c} (44)

εxy(ω) � −nq
2

mε0
· iωc

ω{(ω + iγ)2 − ω2
c}

εzz(ω) � 1 − nq2

mε0
· 1
ω(ω + iγ)

The second term gives rise to magneto-optical spectra, in
which the real part shows a dispersion-type spectrum and the
imaginary part a bell-type. If scattering is neglected (γ → 0),
central frequency exists at the cyclotron frequency ωc of free
carriers.

This case leads to a transport phenomenon of free carriers in
the magnetic field. In this case, we should use a conductivity
tensor instead of a dielectric permittivity tensor. For this purpose,
we use relation σ ij � iωε0(δij − εij). Then we obtain conductivity
tensor elements as

σxx(ω) � nq2

m
· i(ω + iγ)(ω + iγ)2 − ω2

c

σxy(ω) � −nq
2

m
· ωc(ω + iγ)2 − ω2

c

(45)

σzz(ω) � nq2

m
· i

ω + iγ

If we assume ω � 0 (DC transport), (Eq. 45) lead to the Hall effect

σxx(0) � nq2

m
· γ

γ2 + ω2
c

σxy(0) � nq2

m
· ωc

γ2 + ω2
c

σzz(0) � nq2

m
· 1
γ

By calculating the inverse matrix, we obtain resistivity tensor
elements as

ρxx(0) � ρzz(0) � mγ/nq2 � 1/σ0 (46)
ρxy(0) � B/nq �� RHB

Here RH � 1/nq is the Hall coefficient.

2.3.3 Dielectric Permittivity Derived by Quantum
Mechanics
In this section, we describe that dielectric permittivity tensor
elements are expressed by superposition of dispersion relations
based on optical transitions in materials. According to the Kubo
formula [6], the electric polarizability tensor element χμ] is given by
the Fourier transform of the self-correlation function of current
density operators. Here the detailed derivation of the equation is
omitted here, and only the result is described as follows.

χxx(ω) � lim
γ→0

nq2(ω + iγ)
Zωε0

∑
n<m

(ρn − ρm) 2ωmn|〈m|x|n〉|2
ω2
mn − (ω + iγ)2

� lim
γ→0

nq2

mε0
∑
n<m

(ρn − ρm) (fmn)x
ω2
mn − (ω + iγ)2 (47)

χxy(ω) � lim
γ→0

−nq2
2Zωε0

∑
n<m

(ρn − ρm)ω2
mn(|〈m|x+|n〉|2 − |〈m|x−|n〉|2)

ω2
mn − (ω + iγ)2

� lim
γ→0

( − inq2

2mε0
) ∑

n<m
(ρn − ρm) ωmn(f+

mn − f−
mn)

ω(ω2
mn − (ω + iγ)2)

Here ρn is a probability of occupation of state |n〉 expressed as

ρn �
exp( − Zωn/kT)
Trexp(−H0/kT) � exp( − Zωn/kT)∑

n
exp( − Zωn/kT) (48)

and fmn is the oscillator strength of optical transition between the
ground state |n〉 and the excited state |m〉 and

(fmn)x � 2mωmn|〈m|x|n〉|2/Z
(fmn)± � mωmn

∣∣∣〈m∣∣∣x±∣∣∣n〉∣∣∣2/Z

FIGURE 3 | Spectra of dielectric permittivity derived from the classic equation of motion for electrons (A) Lorentz-type spectra, (B) Drude-type spectra.
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where qx+ and qx− are electric dipole operators for RCP and LCP,
respectively.

Electric permittivity can be converted to dielectric
permittivity as

εxx(ω) � 1 − nq2

mε0
∑
n<m

(ρn − ρm) (fmn)x
ω2
mn − (ω + iγ)2 (49)

εxy(ω) � −i nq2

2mε0
∑
n<m

(ρn − ρm) ωmnΔfmn

ω(ω2
mn − (ω + iγ)2)

Here Δfmn � f+
mn − f−

mn is a difference in oscillator strengths
for RCP and LCP.

At absolute zero temperature T = 0, we assume ρn � 1 and
ρm � 0, then

εxx(ω) � 1 − nq2

mε0
∑
n<m

(fmn)x
ω2
mn − (ω + iγ)2 (50)

εxy(ω) � −i nq2

2mε0
∑
n<m

ωmnΔfmn

ω(ω2
mn − (ω + iγ)2)

2.3.4 Interpretation of Quantum Mechanical Theory of
Dielectric Permittivity
In the following, we make a physical interpretation of why
permittivity as shown by (50) can be expressed in terms of
optical transitions between electronic states. First, the diagonal
element of dielectric permittivity is a quantity showing how easily
materials can be polarized by an external electric field. Figure 4A
illustrates how the charge distribution of an atom is altered from
an unperturbed state by an application of an electric field as a
perturbation, producing an electric dipole moment. It is well
known that any perturbed wavefunctions can be Fourier

expanded with unperturbed eigenfunctions. Here coefficients
of expansion are given by the oscillator strength and energy
nominators (ω − ωnm)−1.

In the second place, we provide physical interpretation for off-
diagonal elements of dielectric permittivity. In order to get a non-
zero off-diagonal element, Δfmn, or the difference of oscillator
strengths for RCP and LCP should exist. In order for electric
dipole transition to occur, values of Lz should be different by the
unity between the ground and excited states. We assume L = 0 for
the ground state, then the orbital angular momentum Lz for the

FIGURE 4 | (A) The charge distribution of an atom is altered from an unperturbed state by an application of an electric field as a perturbation, producing an electric
dipole moment.(B) Schematic illustration explaining the origin of the magneto-optical effect. Angular distribution of electron for Lz = ±1 is considered p-electron-like and
can be expressed as p± = px ± ipy expressing right-hand rotation and left-hand rotations of p-like distribution around the z-axis. This means circularly polarized light
induces rotation of electrons.

FIGURE 5 | Schematic illustration showing an importance of spin-orbit
interaction for magneto-optical effect to occur. (A) exchange splitting is
absent, (B) exchange splitting is present, and (C) exchange splitting and spin-
orbit interaction are present.
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excited state is +1 or -1 as shown in the electronic level diagram of
Figure 4B. Angular distribution of electrons for Lz � ± 1 is
considered p-electron-like and can be expressed as p± �
px ± ipy expressing right-hand rotation and left-hand
rotations of p-like distribution around the z-axis. This means
circularly polarized light induces rotation of electrons.

In the above discussion, the effect of magnetization has not
appeared explicitly. In the following, we treat the effect using the
electronic level diagram shown in Figure 5 Without magnetization
energy levels of Lz = +1 and those with Lz = -1 degenerate as shown
in Figure 5A. Magnetization lifts the spin degeneracy by exchange
splitting, giving rise to splitting for the up-spin and down-spin states
but does not lift angular orbital degeneracy as in Figure 5B.With the
spin-orbit interaction, total angular momentum J (=L + S) becomes
a good quantum number to represent the states as in Figure 5C. If
the ground state splitting is sufficiently larger than thermal energy kT
The ground state is composed of only up-spin electrons, the
transition from Jz = +1/2 ground state to Jz = +3/2 occurs by
RCP, and the transition from Jz = +1/2 to Jz = -1/2 occurs by LCP.
The magneto-optical effect appears if the transition energies of the
two transitions are different.

For elevated temperatures transitions from Jz = -1/2 brings
about inverse spectral response should be considered considering
the distribution of Jz = +1/2 and Jz = -1/2 states.

2.4 Shapes of Magneto-Optical Spectra
2.4.1 Magnetic Insulators7

In this subsection, we discuss the shape of magneto-optical
spectra in magnetic insulators.

1) Diamagnetic term or two-transition-type spectrum

The energy diagram of Figure 6A assumes that the ground
state has no orbital degeneracy, and the excited state is split by the
spin-orbit interaction. Using Eq. 50 and assuming T = 0, real and
imaginary parts of εxy can be approximated by Eq. 51.

εxy′ (ω) ≈ nq2γf0Δso

2mε0ω
· ω0 − ω{(ω0 − ω)2 + γ2}2 (51)

εxy″ (ω) ≈ − nq2f0Δso

4mε0ω
· (ω0 − ω)2 − γ2{(ω0 − ω)2 + γ2}2

Spectra of εxy′ and εxy″ are illustrated in Figure 6B, where the
real part shows a dispersion type spectrum, and the imaginary part
shows a bell-shaped spectrum with wings on both sides. This type
is called “diamagnetic” for historical reasons. Materials with strong
magneto-optical effects show spectra of this type in most cases.

2) Paramagnetic term or one-transition-type spectrum

The energy diagram of Figure 7A assumes that both ground and
excited states are not subjected to splitting in energy, but oscillator
strengths f± of transitions between ground and excited states for
RCP(+) and LCP(-) are different with a difference Δf. Using Eq. 50,
real and imaginary parts of εxy can be approximated by Eq. 52.

εxy′ (ω) ≈ nq2γΔf
mε0

· ω0(ω2
0 − ω2 + γ2)2 + 4ω2γ2

(52)

εxy″ (ω) ≈ − nq2Δf
2mε0

· ω0(ω2
0 − ω2 + γ2)

ω{(ω2
0 − ω2 + γ2)2 + 4ω2γ2}

Spectra of εxy′ and εxy″ are illustrated in Figure 7B, where the
real part shows a bell-type spectrum and the imaginary part
dispersion-type spectrum. This type is called “paramagnetic” for
historical reasons. Magneto-optical spectra of spin-forbidden
ligand-field transitions mostly show this type.

2.4.2 Magnetic Metals8

Optical phenomena in metals should be explained in terms of
inter-band transitions. In this case, energy band calculations are
employed to obtain eigenvalues and eigenfunctions of band-states
in k-space, from which optical responses are calculated using the
Kubo formula. For metals, conductivity tensor is used instead of
permittivity tensor. We introduce momentum operator

π � p + π

4mc2
σ × ∇V(r) (53)

Here σ is a spin quantum number, and σ × ∇V(r) is spin-orbit
interaction.

Using π± � πx ± iπy, momentum operator for circular
polarizations and off-diagonal element of conductivity for
infinite scattering lifetime limit are described by Eq. 54.

σxy″ (ω) � πq2

4m2Zω
∑occ
l,k

∑unocc
n,k

(|〈l|π+|n〉|2 − |〈l|π−|n〉|2)δ(ω − ωnl,k)
(54)

According to Erskine and Stern, the above formula can be
expressed in an integral form on k as Eq. 55.

ωσxy″ � πq2

4m2Z
· 1
8π3

∫ dk3Fnl(ω)δ(ω − ωnl) (55)

Here Fnl is oscillator strength or transition and can be
expressed in terms of optical transition matrix as (56)

Fnl(ω) � |〈n ↑ |π−|l ↑〉|2 − |〈n ↑ |π+|l ↑〉|2 + ∣∣∣〈n ↓ |π−|l ↓〉∣∣∣2
− ∣∣∣〈n ↓ |π+|l ↓〉∣∣∣2

(56)
By defining average transition probability �F by �Fnl ∫dk3δ

(ω − ωnl) � ∫dk3Fnl(ω)(ω − ωnl), and introducing joint density
of state Jnl(ω) � 1

8π3 ∫dk3δ(ω − ωnl), we get a simple Eq. 57.

ωσxy″ � πq2

4m2Z
�FnlJnl(ω) (57)

We define average oscillator strength for RCP and LCR as �F±
nl �

|〈n ↑ |π ∓ |l ↑〉|2 − |〈n ↑ |π±|l ↑〉|2 and joint density of states for
RCP and LCP J±nl using �F±

nlJ
±
nl(ω) � 1

8π3 ∫dk3 �F±
nlδ(ω − ωnl) we get

ωσxy″ � πq2

4m2Z
(�F−

nlJ
−
nl(ω) − �F

+
nlJ

+
nl(ω)) (58)
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This formula means that the magneto-optical spectrum of
metals can be expressed as a difference between inter-band
transitions for RCP and LCP.

Figure 8 shows a schematic illustration of the joint density of
state (JDOS) spectra for LCP and RCP. Without magnetization
JDOSs for LCP and RCP are canceled out as in (a). With a
magnetization, the center of gravity of JDOS curves for LCP and
RCP shift byΔE as in (b), resulting in a σxy′ spectrum as shown in (c).

3 MEASUREMENT TECHNIQUES OF
MAGNETO-OPTICAL SPECTRA [9]

3.1 Principles of Measurement
3.1.1 Orthogonal Polarizer (Cross Nicol) Technique
The most orthodox technique for evaluation of magneto-optical
rotation is the “Orthogonal Polarizer Method”, or the so-called
“Cross-Nicol Method”.

Optical setups are shown inFigure 9A for a Faraday configuration
in which amagnetic field is applied parallel to the optical path. Let the
angle of the optical axis of polarizer P and analyzerA form the vertical
axis θP and θA and Faraday rotation angle of the sample θF, then
output I of the detector D can be written as Eq. 59.

I � I0cos
2(θP + θF − θA) (59)

For cross nicol condition θP − θA � π
2, this formula can be

rewritten as

I � I0
2
(1 − cos 2θF) (60)

When θF is proportional to the applied fieldH, the output I can be
plotted against H, from which the Verdet constant can be obtained.

3.1.2 Rotating Polarizer (Analyzer) Technique
This method employs constant rotation of polarizer P or analyzer
A. Figure 9B shows a case in which the angle of P is fixed, and the

FIGURE 6 | Diamagnetic term of magneto-optical spectra (A) Energy level diagram with spin-orbit split excited state (B) Diamagnetic spectra of off-diagonal
dielectric permittivity elements.

FIGURE 7 | Paramagnetic term of magneto-optical spectra (A) Energy level diagram without splitting and with a difference in oscillator strengths for RCP and LCP
(B) Paramagnetic spectra of off-diagonal dielectric permittivity.
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angle of A is rotated with constant angular frequency p. The
output ID of detector D is expressed by Eq. 61 and doubled
frequency signal appears.

ID � I0cos
2(θF − θA) � I0

2
(1 + cos 2(θF − pt)) (61)

Faraday rotation angle can be obtained from the phase shift
Δφ � 2θF from zero applied field. Usually, the phase can be
measured using a lock-in amplifier.

3.1.3 Oscillating Polarizer (Analyzer) Technique
As shown in Figure 9C, the angle of analyzer is oscillated with a
small angle amplitude of θ0 and angular frequency of p

θA � θ0 sinpt (62)
Then output of D can be expanded using Bessel’s function Jn

ID � I0sin
2(θ0 sinpt + θF) � I0

2
{1 − cos 2(θ0 sinpt + θF)}

� I0
2
(1 − J0(2θ0)) cos 2θF − I0J1(2θ0) sin 2θF · sinpt

− I0J2(2θ0) cos 2θF · cos 2pt ≈ I0
2
(1 − J0(2θ0))

− 2I0J1(2θ0)θF sinpt − I0J2(2θ0) cos 2pt
(63)

Here Faraday rotation is assumed to be small, leading to the last
expression. In the above formula, the term with angular frequency p
is proportional to the intensity and Faraday rotation and the term
with 2p is proportional to the intensity, then by taking a ratio of
p-component and 2p-component we can obtain Faraday rotation θF.

3.1.4 Faraday Cell Technique
In this method, we use a Faraday cell to compensate Faraday
rotation of the sample by using a feedback system. Figure 9D

shows an experimental setup, where the optical axis of
polarizer P and that of analyzer A are set vertically, leading
to zero output in detector D without a sample. The feedback
system works to compensate for the Faraday rotation by
flowing current to the Faraday cell to keep the output zero.
To increase sensitivity, modulating AC current is superposed
to the DC current supply for the Faraday cell and the output
AC signal detected by a lock-in amplifier is fed to the DC
supply. Using the Faraday cell, we can add polarization θ �
θ0 + Δθ sinpt to the system. The output signal ID for the setup
is given by Eq. 64.

ID � I0sin
2(θ0 − θF + Δθ sinpt)

� I0
2
{1 − cos 2(θ0 − θF) cos(2Δθ sinpt)

+ sin 2(θ0 − θF) sin(2Δθ sinpt)} ≈ I0
2
(1

− cos 2(θ0 − θF)J0(2Δθ)) + I0 sin 2(θ0 − θF)J1(2Δθ) sinpt
− I0 cos 2(θ0 − θF)J2(2Δθ) cos 2pt

(64)

FIGURE 9 | Magneto-optical measurement technique (A) Orthogonal
polarizer technique L: light source, p: polarizer, S: sample, A: analyzer,
D: detector (B) Rotating polarizer technique p: rotating polarizer (polarizing
angle θp, S: sample (Faraday rotation θF), A: analyzer, D: detector (C)
Oscillating polarizer technique p: polarizer, S: sample, A oscillating analyzer,
D: detector (D) Faraday cell technique p: polarizer, S: sample. A: analyzer,
D: detector.

FIGURE 8 | Schematic illustration of band structure and magneto-
optical spectra in metals (A) Density of state curves of a metal without
magnetization (B) Density of state curves of a metal with magnetization (C)
Typical magneto-optical spectrum of a metal with magnetization.
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The p component of the output, which is proportional to
sin 2(θ0 − θF) , is fed to the DC supply of the Faraday cell to keep
the signal zero, i.e., θ0 � θF. The relation between the DC current
and the rotation is calibrated in advance. This method is a so-
called “Null method” and provides a precise value of rotation.
Although this method is superior to those in the previous sub-
sections, there are drawbacks such as the influence of the
magnetic field of the Faraday cell, the effect of temperature
increase to compensate for a large rotation, and the small
Verdet constant in the long wavelengths.

3.1.5 Measurement of Ellipticity
Magneto-optical ellipticity or magnetic circular dichroism
(MCD) can be measured using magneto-optical measurement
techniques introduced in sub-sections 3.1.1–3.2.4 by introducing
a quarter wave plate in front of the analyzer.

As shown in Figure 10, we assume that light with an
ellipticity η is incident to a quarter wave plate, then incident
elliptically polarized electric vector can be expressed as E �

E0(cos ηi + isinηj) , where i and j are unit vectors with x and y
diction. We assume light propagates along the z-axis. When the
light passes through a quarter wave plate with an optical axis
along x, the light emitted through the wave plate can be
expressed as (65).

E′ � E0(cos ηi + iexp(−iπ/2) sin ηj) � E0(cos ηi + sin ηj) (65)
The emitted light is a linearly polarized light rotated by angle η

from the x-axis as shown in the left figure.
In this way, we can convert an elliptically polarized light to a

linearly polarized light with an inclination of ellipticity. However,
for spectroscopic measurement for a wide wavelength region, the
quarter wave plate should be changed for different wavelengths.
Use of a Babinet-Soleil compensator is recommended.

3.1.6 Optical Retardation Modulation
Technique—Simultaneous Measurement for Both
Rotation and Ellipticity [10, 11]
For spectroscopic measurement of both rotation and ellipticity,
we recommend the use of the optical retardation modulation
technique, as illustrated in Figure 11.

We use a piezo birefringent modulator (commercially sold
PEM = photo-elastic modulator) to modulate optical retardation.
The polarization axis of polarizer P should be set to be 45°

inclined to the optical axis of the PEM, while that of analyzer
A parallel to the optical axis of the PEM. Assuming modulated
optical retardation as δ � δ0 sinpt, the output of detector D can
be expressed as (66).

ID � I0
2
{1 − 2ηF sin(δ0 sinpt) − sin 2θF cos(δ0 sinpt)}

≈
I0
2
{1 − 2θFJ0(δ0)} + I0 · 2ηFJ1(δ0) sinpt − I0

· 2θFJ2(δ0) cos 2pt (66)
By taking the ratio of the p-component and DC component,

we obtain ellipticity, and the ratio of the 2p-component and DC
component gives rotation. Therefore, we can obtain both
ellipticity and rotation simultaneously.

FIGURE 10 | Measurement of ellipticity using a quarter wave plate.

FIGURE 11 | Optical retardation modulation technique.
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Assuming modulation amplitude of optical birefringence of
PEM as Δn, optical retardation described as δ0 � 2πΔnl/λmay be
subjected to wavelength dependence. We can control the optical
birefringence of PEM by an externally applied electric voltage to
suppress the wavelength-dependence between 0.2 and 2 μm.

To calibrate the rotation angle, we remove the sample, and the
polarization angle of p is adjusted to be nearly vertical where the
minimum output of the 2p-component is obtained. Then the
analyzing angle is rotated from +2° to -2° by a step of 1.0° and the
value of the ratio of 2p-component and DC component is
recorded. By taking the difference between the values for the
analyzer angles of the same absolute values with different signs
(e.g., +1° and -1°), the calibrated value per unit angle is obtained.

For calibration of ellipticity, a retardation plate made of
sapphire is employed. A sapphire crystal plate of 0.295 mm
thickness was cut along the crystal plane which assures double
refraction. If we set the optic axis of the sapphire plate in the
vertical direction and the polarizing direction of the analyzer at
± 45° the spectral dependence of the ratio of p-component to DC-
component shows an oscillating spectral dependence, maxima,
andminima appearing at wavelengths where retardation becomes
π/2, the envelope providing a calibration function.

3.1.7 Magneto-Optical Imaging Using Liquid Crystal
Modulator [12]
In the case of MO imaging, lock-in detection cannot be employed
since image sensors such as the CCD camera cannot respond to
the modulation frequency of the PEM. Instead of the lock-in
detection, the difference between two images corresponding to
different polarization states is calculated by using an image-
processing technique, which is equivalent to the PEM-lock-in
method described in the previous sub-section. To generate
different polarization states, we use a liquid crystal modulator
(LCM). Schematic drawings of MOmicroscopes using a λ/4 plate
and an LCM are shown in Figure 12.

In the following, we explain a principle of the polarization-
modulation MO imaging technique in terms of the Jones matrix
method. Each optical component shown in Figure 12 is expressed
in terms of a Jones matrix.

A matrix of the polarizer with its optic axis parallel to the
vertical axis 10) is expressed by

P � ( 1 0
0 0

)

Jones matrix for the LCM in which retardation δ can be
controled by an applied voltage can given by

JL � 1
2
( eiδ/2 + e−iδ/2 eiδ/2 − e−iδ/2

eiδ/2 − e−iδ/2 eiδ/2 + e−iδ/2
) � ( cos δ/2 i sin δ/2

i sin δ/2 cos δ/2 )
where LP, RCP and LCP correspond to δ = 0, π/2 and -π/2,
respectively.

For a Faraday configuration shown in Figure 12, a matrix of a
sample having Faraday rotation θF and Faraday ellipticity ηF is
expressed by

S � ( cos θF + iηF sin θF −sin θF + iηF cos θF
sin θF − iηF cos θF cos θF + iηF sin θF

)
An analyzer with an optical axis of 45° is

A � 1
2
( 1 1
1 1

)
Using these matrices, an output signal E2 using the LCM can

be calculated by

E2 � ASJLPE1

Consequently, an intensity measured at a detector is a square
of the absolute value of E2 as a function of θF, ηF and δ, as Eq. 67.

I(θF, ηF, δ) � (∣∣∣∣eiδ cos θF + sin θF
∣∣∣∣2

+ η2F
∣∣∣∣eiδ sin θF − cos θF

∣∣∣∣2) |Ex|2
2

(67)

Images of Faraday rotation θF and ellipticity ηF can be
reconstructed from three images for different polarization
states, LP, RCP and LCP, by calculating at each pixel using
the following formulae.

θF � 1
2
sin−1{2ILP − (ILCP + IRCP)(1 − η2F)|Ex|2 } (68)

ηF � 1
2
(ILCP − IRCP)/|Ex|2.

where ILP, IRCP, and ILCP are intensities at each pixel for LP, RCP,
and LCP, respectively. For small values of θF and ηF less than a few
degrees, Eq. 68 can be reduced to simple expressions (69) by
replacing |Ex|

2 with (ILCP + IRCP) as follows,

θF ≈ (1/2){2ILP − (IRCP + ILCP)}/{(1 − η2F)(IRCP + ILCP)} (69)
ηF ≈ (1/2)(ILCP − IRCP)/(ILCP + IRCP)

Optical retardation can be modulated in a few tenths of a
second by changing AC voltages applied to the LCM, which
provides a possibility of real-time imaging using the polarization
modulation technique.

3.2 Spectroscopic Measurements
3.2.1 Spectroscopic Measurement of Polar MOKE by
Optical Retardation Modulation Technique
Figure 13 provides a measurement setup for the polar magneto-
optical Kerr effect for a wide spectral region from near-ultraviolet

FIGURE 12 | Schematic drawings of MO microscopes using a quarter
wave plate and an LCM.
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to near-infrared region. The system consists of a light source, a
monochromator, a polarizer, a photo-elastic modulator, an
analyzer, ellipsoidal mirrors, and a detector. As the light
source, we use a halogen tungsten lamp for the visible to
infrared wavelength region and a Xenon lamp for the near-
ultra-violet ~ visible ~ near-infrared region. The halogen
tungsten lamp shows a flat spectral distribution, while the
Xenon lamp has a high light intensity for the short wavelength
region but has a drawback of line spectra in the near-infrared
region. For wavelengths shorter than 200 nm a deuterium lamp is
employed. For the monochromator, we select one with a small
f-number (f = 3–4) At the expense of high resolution. It is
common to prepare two or three diffraction gratings with
different blaze-wavelengths according to the wavelength
region. Since xenon lamps bring stray light to the
monochromator, it is desirable to use a double-
monochromator. For the spectroscopic measurement in a wide
wavelength region, it is desirable to construct the light condensing
system using ellipsoidal mirrors with less chromatic aberration.
As a polarizer and analyzer, we recommend the use of a MgF2-
made Rochon prism polarizer. Since this type of polarizer has a
double image, a slit is used to cut unnecessary polarization.
Finally, as a detector, we use a photomultiplier with a
compound-semiconductor cathode having lowered affinity for
200–1800 nm. For longer wavelengths, we use a cooled CdHgTe
photodiode.

3.2.2 Spectroscopic Measurement Using A
Multi-Channel Spectrometer [13]
Figure 14 shows a schematic diagram of the MO spectrometer
utilizing the polarization modulation method with a
multichannel spectrometer. A halogen lamp is used as a light
source, and a multi-channel spectrometer having a detection
range of 350–1000 nm, with a 2048-element linear silicon
CCD array detector, is used as a light detector.

For the MO measurement, collimating lenses (L1, L2, L3),
pinhole (ph), polarizer (P), perforated electromagnet (EM), and

an analyzer (A) were used. A quarter wave plate (Q) was used to
carry out the polarization modulation method. The Q will be
rotated by a steppingmotor. The transmission axis of the analyzer
(α) forms an angle of 45° with the polarizer, and the Q will be set
to −45°, 0°, and +45° with the polarizer for the measurement.

The procedure of measurement of the Faraday rotation and
Faraday ellipticity spectra is as follows. While applying a
magnetic field to the sample, the optical axis of the Q is set
to −45°, 0°, and +45°, corresponding to left-circularly, linearly and
right-circularly polarized light, respectively. Those three
polarized light intensity spectra were measured, and Faraday
rotation angle (θF) and Faraday ellipticity angle (ηF) are
calculated by the following Eq. 69,

θF ≈
1
2
{2I0 − (I45 + I−45)

I45 + I−45
} (70)

ηF � −1
2
{I45 − I−45
I45 + I−45

}
where I−45°, I0, and I45° are light intensities when the optical axis of
the Q is −45°, 0°, and 45°. The units of the values obtained by Eq.
70 are radians.

3.2.3 Analysis to Obtain the Off-Diagonal Element of
Permittivity Spectrum From Experimental Data
As described in section 2, MO effects are derived from the off-
diagonal element εxy as well as the diagonal element εxx of electric
permittivity tensor. Real and imaginary parts of permittivity are
obtained from spectra of optical constants (n and κ) measured by
a spectroscopic ellipsometer. However, commercial spectroscopic
ellipsometer covers wavelength-range from 300 to 800 nm,
Spectra of optical constants for a wider spectral region can be
obtained from the spectrum of reflectivity R measured at
synchrotron facilities using a numerical analysis as shown as
follows.

In the analysis, we calculate the spectrum of phase shift Δθ
subjected at reflection by using the Kramers–Kronig formula as
shown in Eq. 71.

Δθ(ω) � ω

π
℘∫∞

0

lnR(ω′)
ω′2 − ω2

dω′ (71)

FIGURE 13 | Spectroscopic measurement setup for polar magneto-
optical Kerr effect for wide spectral region from near-ultraviolet to near infrared
region.

FIGURE 14 | Schematic diagram of the MO spectrometer utilizing
the polarization modulation method with a multichannel spectrometer.
LS: light source (halogen tungsten lamp), L1 L2 L3: collimating lenses,
ph: pinhole, P: polarizer, Q: quarter wave plate, EM:
electromagnet, S: sample, A: analyzer, D: multi-channel spectrometer
with a 2048-element linear silicon CCD array detector.
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The integral requires spectral data for ω from 0 to ∞. To get
values exceeding the range of the measurement we use suitable
extrapolation formulae, for which parameters are obtained so as
to fit the values of visible region obtained by spectroscopic
ellipsometry. Using the obtained phase shift Δθ(ω) optical
constants can be calculated as described in Eq. 72.

n(ω) � 1 − R(ω)
1 + R(ω) + 2

�����
R(ω)√

cosΔθ(ω) (72)

κ(ω) � 2
�����
R(ω)√

sinΔθ(ω)
1 + R(ω) + 2

�����
R(ω)√

cosΔθ(ω)
From Faraday rotation θF and Faraday ellipticity ηF, we get

the real and imaginary part of the off-diagonal element of
permittivity tensor as follows.

εxy
′ � −2c

ωl
(κθF + nηF)

εxy
″ � −2c

ωl
(nθF − κηF)

From MOKE rotation θK and MOKE ellipticity ηK, we get real
and imaginary part of the off-diagonal element of permittivity
tensor as follows.

εxy
′ � n(1 − n2 + 3κ2) − κ(1 − 3n2 + κ2) (73)
εxy
″ � κ(1 − n2 + 3κ2) + n(1 − 3n2 + κ2)

3.2.4 Measurement of Cotton-Mouton Effect
As described in subsection 2,2,5, the Cotton-Mouton effect
is a MO effect in the Voigt configuration, where the applied

magnetic field is perpendicular to the light propagation.
The effect appears as magnetically induced optical
retardation. The experimental setup (Figure 15) consists
of a polarizer, a photo-elastic modulator PEM, a sample, an
analyzer, and a detector. The polarization angle of both the
polarizer and the analyzer is set 45° to the optic axis
of PEM.

Assuming optical retardation is described as δ � δ0 sinpt, and
retardation due to the sample as δs, the output signal of the
detector is given by Eq. 74.

ID � I0{1 + cos δs cos(δ0 sinpt) − sin δs sinpt sin(δ0 sinpt)}
(74)

≈ I0(1 + J2 cos δs) − I0J1 sin δs sinpt

By taking a ratio of the p-component to the DC component we
obtain optical retardation of the sample.

4 CONCLUSION

First, we have described the fundamentals of the
magneto-optical effect from macroscopic and
microscopic stand-point, to demonstrate that off-
diagonal element of electric permittivity, as well as
the contribution of a diagonal element, have crucial
importance for the interpretation of magneto-optical
spectra of materials. Next, we described different
measurement techniques of magneto-optical effect,
with particular reference to the retardation
modulation technique.

We hope that this review article will be useful for beginners in
magneto-optics research.
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