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WHAT OCCURS WHEN YOU DIVIDE 
A MAGNET TO PIECES? 

Microscopic Origin of Magnetism 



MICROSCOPIC ORIGIN OF 
MAGNETISM  



What occurs when a magnet is chopped into 
pieces? 

ÅEven when a magnet is 
divided, only small  
magnets appears with the 
same magnetic charge 
density on both ends. 

ÅMagnetic charges always 
appear as pair of opposite 
polarity, and no magnetic 
monopole has been 
observed until now. 

Fig .1  Even if  a magnet  is 

divided  into  pieces, areal  

density  of magnetic  charge at  

both ends of the small  magnet  

remains  unchanged.  



What occurs when the magnet is cut 
into pieces of atomic scale?  

ÅFinally even the atomic scale pieces show 
similar magnetic properties as the magnet. 

ÅNo magnetic poles exist on the atom. 

ÅWe start with a classical Bohr model of atom, 
in which an electron is circulating around the a 
nucleus.  

= = 

Fig.2 Classic Image of Atom 



ü Classic Picture of Atoms and Atomic Magnet 

ÅAccording to the classic model of an atom, 
electrons circulate around a nucleus. Since  
current of ςev is created when an electron with a 
charge ςe [C] moves with a velocity v, the circular 
current generates a magnetic moment.  

ÅEquivalence of the magnetic moment generated 
by the circular current and the one produced by a 
pair of opposite magnetic charges can be verified 
by an equivalence of torque when both are 
placed in the static field. 

 



ü  created by a circular current 

Å An electron with a charge -e[C] moving with a linear 
velocity of v[m/s] along a circumference of a circle 
with a radius r produces a current  
  i=-e/t=-ev/2pr[A]   (1) 
since time t to go around the circle is expressed by 
 t=2pr/v[s] 

Å If the circular current is placed in a homogeneous 
static magnetic field H[A/m], a force vector dF[N] 
working on a minute arc ds[m] can be described by 
the following formula ([N]=[m kg/s2]) 
 dF=ids m0H  (2) 

Å Since a torque dT working on an arc ds at a 
position r  is expressed by r dF,  a total torque 
T[Nm] can be obtained by integrating dT along the 
circumference as follows: 

    T=ӣdT = (i/2)(ӣr ds) m0H 
     =iS m0H   (3) 

 

Fig .3 An electron  going 

around  a circle  generates 

a magnetic  moment  

ids 

r  

dF 

Fig .4 A force working  on a 

circular  current  in  a magnetic  

field . 

H  



ü Torque working on a pair of magnetic 
charges placed in a magnetic field 

Å A torque T[Nm] working on a magnetic moment m=Qr[Wbm] 
consisting of a pair of hypothetical magnetic charges +Q[Wb] and  
 [Wb] placed in a magnetic field H can be expressed by the 
following equation: 

    T=Qr H=m H (4) 

Since eq.(4) posesses the same vector product form T=iS m0H in 
eq.(3), we can obtain an equation for magnetic moment m[Wbm] by 
comparison of two equations as eq.(5). 

  m=m0iSn         (5) 

It is found from eq.(5) that circulating current generates a magnetic 
moment, the value of which is proportional to the current and the 
area of the circle surrounding by the current, and the direction of 
which is along the normal of the area of the circle. 

 +Q 

-Q 

r 
H 



üCurrent Ą Angular momentum 

ÅUsing equations i =-ev/2pr and S=pr2 m can be  

expressed as follows:  

  m=m0iSn=m0(-ev/2pr)(pr2)n (6) 

ÅWe replace r and v in eq.(6) by using an 

angular momentum G=r³mv to get an equation   

      m =m0(-1/2)er³v= (-m0e/2m)G  (7) 

ÅIn this way we finally express  magnetic 

moment in terms of angular momentum. 



ü Magnetic Moment in  
Quantum Mechanical Expression 

ÅTo express a motion of an electron in an atom, it is necessary 
to treat physical quantity in terms of the quantum mechanics.  

ÅIn quantum mechanics angular momentum takes discrete 
values with a unit of h-bar, and expressed by an equation 
 ɜ ᴐὰ, where l is the orbital angular momentum quantum. 

ÅBy substitution of ũ into eq.(7), an orbital magnetic moment is 
obtained as follows: 
‘ ‘ Ὡᴐςάϳ ὰ ‘ὰ  (8)  

ÅHere ‘ Ὡᴐςάϳ  is a basic unit of magnetic moment called 
Bohr magneton, and the value is expressed in SI unit (E-H 
relation) 

Å‘ ρȢρφρπ [Wbm]  (9)  



ü Electronic orbital and quantum number 

ÅElectronic states of electrons in an atom can be 
described using quntum numbers, n, l and m=lz. 

ÅGiven the principal quantum n, orbital angular 
momentum quantum l takes discrete number 
between 0 and n-1 with increment of 1. For example 
l=0 for n=1 and l=0 or 1 for n=2. 

ÅFor an orbital angular momentum quantum l, 
quantization component (magnetic quantum 
number) m=lz takes total of 2l+1 values, as follows:  
l, l-1 -l+1, -l 



Table 1 Angular momentum quanta 

n l m orbital Degeneracy 

1 0       0       1s 2 

2 
0       0       2s 2 

1     1 0 -1     2p 6 

3 

0       0       3s 2 

1     1 0 -1     3p 6 

2   2 1 0 -1 -2   3d 10 

4 

0       0       4s 2 

1     1 0 -1     4p 6 

2   2 1 0 -1 -2   4d 10 

3 3 2 1 0 -1 -2 -3 4f 14 



ü Shape of electronic distribution corresponding 
to an orbital quantum number 

ÅOrbitals s, p, d, f represent orbital shape, 
corresponding to orbital quantum number l=0, 
1, 2, 3, respectively.  

Å Fig.5 gives a schematical illustration of spatial 
distribution of electrons of 1s, 2s, 2pz, 3dxy, 3dz, 
4fz orbitals. 

Å As shown in the figure, s-orbital has no 
constriction, p-orbitals have one constriction, 
and d-orbitals have two constrictions. In this 
way orbital angular momentum quantum l 
represents number of constrictions of electron 
distribution. 

ÅMagnetic moment obtained from the 
experiment cannot be explained solely by 
orbital angular momenta, since electron has 
not only orbital but also spin angular 
momentum. 
 

Fig.5 Electron distribution   



ü  Spin angular momentum 

ÅElectron possesses charge and spin. Since spin is 
ŘŜǊƛǾŜŘ ǘƘŜƻǊŜǘƛŎŀƭƭȅ ŦǊƻƳ 5ƛǊŀŎΩǎ ǊŜƭŀǘƛǾƛǎǘƛŎ ǿŀǾŜ 
equation, classical analogy is difficult.  

ÅSpin is an internal degree of freedom of particle 
and has two eigenvalues corresponding to up-
spin (ҧ) and down spin (Ҩ), ie., right-circular and 
left circular rotation, respectively.  

ÅSpin angular momentum quantum s takes only 
two eigenvalues ½ and -½. 



ü Electron possesses spin angular momentum  

ÅThe concept that electron has a spin 
angular momentum was introduced to 
explain a Zeeman effect of D1 
luminescence of Na; i.e., splitting of the 
luminescence line 598.6nm
3s1/2ҥоǇ1/2  by a magnetic field. 

ÅExistence of spin angular momentum is 
supported by Stern-Gerlach experiment 
in which particles (silver atoms in the 
original experiment) are sent through an 
inhomogeneous magnetic field to hit a 
screen, which shows discrete points 
rather than a continuous distribution, 
owing to the quantum nature of spin.  

D1  
D2  

Fig. 6 

Fig. 7 



üComposed angular momentum and magnetic 
moment of multi-electron atom 

ÅBoth the orbital angular momentum quantum l 

and the spin angular momentum quantum 

contribute to the magnetic moment of an atom. 

ÅIn the case of multi-electron atom, we calculate 

sum of orbital angular momentum quanta 

╛ В■░ , as well as sum of spin angular 

momentum quanta ╢ В▼ and finally we get 

total angular moment by a vector addition of 

both quanta as ╙ ╛ ╢ . 



Composition of total angular 
momentum 

ÅRelation between total orbital angular momentum 
and magnetic moment ml is expressed by, 

 mL=-m0(e>/2m)L=-mBL (10) 

On the other hand total spin angular momentum 
and magnetic moment  has a relation expressed by 

 mS=-(e/m)>S=-2mBS (11) 

Therefore, composed moment m is described as 

 m=mL+mS=-mB(L+2S) (12) 

 

While L+2S is not reserved,  J =L+S is reserved  

during motion. L and S conserving the relation 
shown in Fig, 6 and goes round around the axis J. 

Fig. 8 L and S goes 
around J keeping 
vector relations  



ü[ŀƴŘŜΩǎ g factor 
Å Magnetic moment m is a vector parallel to J with a magnitude which 

is a J axis-projection (line OQ) of L+2S (line OP) vector and 

expressed by eq.(13).  

 m=- gJ mBJ (13)  

 gJJ=|OQ|= |OP|cosa=|L+2S|cosa=J+Scosb 

 By using ÃÏÓɼ╙Ͻ╢ȾὐὛ  and ς╙Ͻ╢ ╙ ╢ ╛ we obtain  

   Ὣ ρ ╙ ╢ ╛ Ⱦς╙   (14) 

Å In quantum mechanics, eigenvalues of L2, S2, J2 

are L(L+1), S(S+1), J(J+1), respectively, since L,S,J 

are angular momentum operators. 

Å Then gJ of eq.(14) can be rewritten as  

 Ὣ ρ ὐὐ ρ ὛὛ ρ ὒὒ ρ Ⱦςὐὐ ρ  (15) 

 gJ is called Landeôs g-factor. 

 

Fig. 9 Projection of OP(L+2S) 
on J , OQ gives a magnitude of 
magnetic moment vector  



Q: Why eigenvalue of L2 is not L2 but L(L+1)? 

ÅIn quantum mechanics any physical quantity corresponds to 

an operator. Since angular momentum operator L contains a 

differential operator as in L=r³p=r³(-i>Ð), two operators A, B 

are not commutative, i.e., [A,B]=AB-BAḘ0. 

Å Given Cartesian components of L is represented by Lx Ly Lz, 
lift operators L+, L- are defined by substitution as  

   L+=Lx+iLy, L-=Lx-iLy. 

Å Commutation relations are  

[Lz,L+]=L+ [Lz,L-]=-L- [L+,L-]=2Lz (A1) 

L2=Lx
2+Ly

2+Lz
2=L+L-+Lz

2-Lz=L-L++Lz
2+Lz (A2) 

L2-Lz
2-Lz=0Ą L2=Lz

2+Lz 

L2FL=(Lz
2+Lz)FL=L(L+1)FL (A3) 

 



ü Electronic configuration of multi-electron 
atoms 

ÅIf many electrons are belonging to an atom, 
contribution of orbital and spin of each electron to 
total momentum becomes complicated. A guideline 
to determine the total momentum was given by 
Hund and called άIǳƴŘΩǎ wǳƭŜέ. 

ÅThe premise of the IǳƴŘΩǎ Rule is Pauli principle: i.e., 
Only one electron can occupy a state specified by a 
set of quantum numbers (n, l, ml, ms). 

 



üIǳƴŘΩǎ wǳƭŜ 

ÅIǳƴŘΩǎ wǳƭŜ ƛǎ ŎƻƴǎƛǎǘƛƴƎ ƻŦ ŦƻƭƭƻǿƛƴƎ ǘƘǊŜŜ ǊǳƭŜǎ 
1. For a given electron configuration, the term with maximum 

multiplicity has the lowest energy. The multiplicity is equal to 2S + 1 , 
where S is the total spin angular momentum for all electrons. 
Therefore, the term with lowest energy is also the term with 
maximum S. 

2. For a given multiplicity, the term with the largest value of the total 
orbital angular momentum quantum number L,  has the lowest 
energy. 

3. For a given term, in an atom with outermost subshell half-filled or 
less, the level with the lowest value of the total angular momentum 
quantum number J ,  (for the operator J=L+S) lies lowest in energy.  
If the outermost shell is more than half-filled, the level with the 
highest value of J,  is lowest in energy. 

After C.Kittel: Introduction to Solid State Physics 10th Edition 



üExpression of Multiplets 

Å In spectroscopy, multiplets are represented by symbols S, P, D, F, G, 
H, I corresponding to L=0, 1, 2, 3, 4, 5, 6 with spin multiplicity 2S+1 
on their left shoulders. Spin multiplicity values are 1, 2, 3, 4, 5, 6 
which are called singlet, doublet, triplet, quartet, quintet, sextet 
corresponding to  S=0, 1/2, 1, 3/2, 2, 5/2, respectively. And J is 
added as subscription. 

Å According to the definition, the ground state of hydrogen is 
described as 2S1/2 doublet S one half and that of boron 2P1/2

doublet P one half for example. 

Å In the case of 3d transition metals, only an electronic configuration 
(orbitals and spins) of incomplete inner shell electrons is sufficient. 
For example the multiplet of Mn2+(3d5) with S=5/2 (2S+1=6), L=0 
όҦ{ύΣ ŀƴŘ J=5/2 is expressed as 6S5/2 sextet S five half). 

 



ü Electronic configuration and magnetic moment in 
3d-ǘǊŀƴǎƛǘƛƻƴ ƳŜǘŀƭ ƛƻƴǎ ŀŎŎƻǊŘƛƴƎ ǘƻ IǳƴŘΩǎ ǊǳƭŜ 

ÅFig. 10 shows how electrons occupy 3d-orbitals in 3d-transition 
ƳŜǘŀƭ ƛƻƴǎ ŀŎŎƻǊŘƛƴƎ ǘƻ IǳƴŘΩǎ ǊǳƭŜΦ 

ÅEach level corresponds to either of five lz=-2,-1,0,1,2. Though 
orbital energy of each level is degenerated, the five orbital 
levels are described separately for clarity. 

CƛƎΦмл 9ƭŜŎǘǊƻƴƛŎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƻŦ оŘ ǘǊŀƴǎƛǘƛƻƴ ƛƻƴǎ ŦƻƭƭƻǿƛƴƎ IǳƴŘΩǎ ǊǳƭŜǎ  



Table 2. L, S, J, multiplet, magnetic moment in transition ions 

ions configuration L S J mJ mS exp multiplet 

Ti3+ [Ar]3d1 2 1/2 3/2 1.55 1.73 1.7 2D3/2 

V3+ [Ar]3d2 3 1 2 1.64 2.83 2.8 3F2 

Cr3+ [Ar]3d3 3 3/2 3/2 0.78 3.87 3.8 4F3/2 

Mn3+ [Ar]3d4 2 2 0 0 4.90 4.8 5D0 

Fe3+ [Ar]3d5 0 5/2 5/2 5.92 5.92 5.9 6S5/2 

Co3+ [Ar]3d6 2 2 4 6.71 4.90 5.5 5D4 

Ni3+ [Ar]3d7 3 3/2 9/2 6.63 3.87 5.2 4F9/2 

Table 2 shows quantum numbers L, S, J for electronic 
configurations shown in Fig.10. Calculated values of magnetic 
moment for J and for S only, as well as experimental values are 
listed in the table. 



ü Contribution of orbital and spin angular momentum 
quantum number to magnetic moment 

Magnetic susceptibility of paramagnets c is inversely 
proportional to temperature T according to Curie law;  

c=C/T (16) 

Here C is Curie constant and can be described using total angular 
momentum quantum number J,  

# ὔὫ‘ὐὐ ρ σὯϳ . (17) 

In this equation N is number of ions, and k Boltzman constants. If 
the susceptibility obeys the Curie law inverse of susceptibility is 
proportional to T. From the slope of the curve C is obtained and 

effective magnetic moment ‘ Ὣ ὐὐ ρ can be obtained. 



ü Paramagnetism of transition metals and rare 
earth ions 

Å As shown in Table 2, calculated 
and experimental values of 
magnetic moment of 3d-transition 
ions are listed. 

Å Fig.11(a) shows experimental  
values by open circles for TM. 
While calculated values for m with 
J cannot explain the experiments 
while those with S fit the 
experiment. 

Å Fig.11(b) shows experimental 
value of magnetic moment of RE 
ions by open circles.  

Å The experimental magnetic 
moment of RE ions are all 
accounted for by calculated 
values for m with J. 

Fig.11 calculated and experimental values of 
paramagnetic effective moment for TM and RE ions   
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WHY IS IRON FERROMAGNETIC? 
 



ü Contribution of orbital and spin angular momentum 
quantum number to magnetic moment 

Magnetic susceptibility of paramagnets c is inversely 
proportional to temperature T according to Curie law;  

c=C/T (16) 

Here C is Curie constant and can be described using total angular 
momentum quantum number J,  

# ὔὫ‘ὐὐ ρ σὯϳ . (17) 

In this equation N is number of ions, and k Boltzman constants. If 
the susceptibility obeys the Curie law inverse of susceptibility is 
proportional to T. From the slope of the curve C is obtained and 

effective magnetic moment ‘ Ὣ ὐὐ ρ can be obtained. 



üMagnetic moment of Fe cannot be explained 
by magnetic moment of Fe atom 

ÅMost people will remember the iron by a magnet. Nevertheless 

it has been a long mystery why magnetism of  iron is so strong. 

Å As described in the last section magnetic moment is originated 

from orbital and spin angular momentum of electrons. 

ÅWithout force to align the atomic moment each other, direction 

of atomic moments align randomly, which does not lead to a 

spontaneous moment.  Application of magnetic field aligns the 

moment slightly toward the field direction, inducing a net 

magnetic moment. This is a mechanism of paramagnetism. 

Å Temperature dependence of susceptibility of a paramagnet 

including 4f-RE ion is well explained by total magnetic moment, 

while that of 3d-TM ion can be explained considering only spin 

angular momentum. 



üExchange Interaction 

ÅMaterials will become ferromagnetic if the force acts 
mutually align the orientation of the magnetic moment 
in the same direction between adjacent atom magnets. 

ÅOn the other hand, it will become antiferromagnetic if 
the force acts mutually align inversely. 

ÅThe force by which atomic magnets mutually align is 
ōǊƻǳƎƘǘ ōȅ ŜƭŜŎǘǊƻƴǎ ŀƴŘ ŎŀƭƭŜŘ άexchange interactionϝέΦ  

ÅFerromagnetic materials loose a spontaneous 
magnetization when temperature exceeds Curie 
temperature, which means that thermal fluctuations 
overcome the exchange interaction. 

*  



ü Magnetic moment per one Fe atom 

ÅHow much is the magnetic moment per a Fe atom, if  
magnetism of Fe is generated by alignment of atomic  
moment? 

ÅSince Fe atom has an electronic configuration  
Ar closed shell[1s22s22p63s23p6]+3d64s2. Only outer shell  
electrons contribute magnetic moment. 

ÅSince spin moment of the two 4s electrons cancel out, only spin 
moment of 3d TM contributes magnetization of Fe. 

ÅElectron configuration is shown in Fig.12, from which S=41/2=2 is 
obtained , so that m=2SmB=4mB. 

Å However, experimental Fe moment per atom is as small as 2.219mB. 
Not only Fe, Co(1.715mB) and Ni(0.604mB) also show smaller moment 
than expected from calculation. 

3.1 

3d6

 

  

Fig .12 Electronic  

configuration  of 3d6 

according to Hundõs 

rule .  

 



ü Itinerant Electron Model 

ÅIn metallic ferromagnet the magnetic moment 
per atom is reduced from the one expected from 
localized model and takes a non-integer value.  

ÅThis phenomenon can only be explained by an 
itinerant electron model *or band electron model 
in which electrons are not confined in the atomic 
position but extend over many atoms in the 
metal to form the energy band structure. 

*  



üEnergy band structure of non-magnetic metals 

In metals conduction band is 
partially filled with electrons. 
The highest energy of filled 
band is called Fermi energy EF. 

 (a) is DOS (density of 
states*) of alkali metals. 

 (b) is DOS of 3d-transition 
metals without magnetic 
moment; In addition to 
the s-band, there appears 
a d-band with high DOS 
near the Fermi energy. 

(b) 

Energy  

 

EF EC 

(a) 

Energy  

 

EF EC 

Fig .13 Density  of states of metallic  band 

(a) Alkali  metal,  (b) 3d transition  metal     
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ü Band DOD of paramagnetic and 
ferromagnetic metals 

Å Energy band of ferromagnetic metals is different for each spin. As 
shown in the DOS curves of  the right half represents up spin and 
the left half represents down spin. 

Å (a) In paramagnetic metals DOS curves of up-spin band and down-
spin band are symmetric.  

Å (b) In ferromagnetic metals up-spin band and down-spin band 
shows a shift in energy. Exchange splitting of the two bands is larger 
in 3d-band than in sp-band.  
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(down spin)  

EC 

EF 

(b) 
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(up spin)  
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DOS 

(up spin)  

EC 

EF 

(a) 

Ɓ ƃ 

DOS 

(down spin)  

Fig.14 



Magnetic moment of Fe can be explained in 
terms of electronic filling 

Slater-Pauling Curve 

ÅMagnetic moment 
per atom for various 
transition metal (TM) 
alloys  plotted 
against number of 
electrons in the alloy. 

Å Plots are on the half 
lines with a 45̄ slope 
starting Cr or on the 
line with a -45̄  slope 
starting from 
Fe30Co70 to Ni60Cu40. Fig.15 Slater Pauling curves of ferromagnetic alloys 

Magnetic moment of Fe, Co and Ni is 2.2, мΦт ŀƴŘ лΦс˃B, 

which are smaller than atomic values(Bozorth) 
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ü Spin-polarized energy bands of Fe 
Difference of occupied 

DOS between ŷ spin  and 

Ź spin bands gives a 

magnetic moment 

Brillouin Zone of 
bcc lattice 

Fig. 16 Spin-polarized band and 
spin-polarized DOS of Fe 



üDOS of Fe and Ni 

Ni 

Spin-polarized DOS 

Ef 

E 

Fe 

Spin-polarized DOS 

E 

 

E

f 

Å ҧ band is fully occupied and Ҩ band 
has only small amount of holes in Ni 
giving ɲn=nҧ-nҨ=0.6 

ÅDOS of ҧ band is smaller than Ҩ band 
in Fe giving ɲn=nҧ-nҨ=2.2 

Å LŦ Ҩ ōŀƴŘ Ƙŀǎ 
0.6 holes, s-
electrons flow 
from Cu into Ni, 
moment 
vanishes when 
Cu content 
becomes 40%. 

Fig. 17 Spin-polarized DOS of Fe and Ni  



ü Mechanism of appearance of spontaneous 
magnetization: localized electron model 

ÅIn magnetic insulators such as iron oxides a 
spontaneous magnetization can be explained  
when atomic magnetic moments  align 
mutually along the same direction.  

ÅThis mechanism is first introduced by Weiss in 
terms of mean-field approximation* (or 
molecular field approximation**). 

* **  



Mean-field Approximation by Weiss 
Å We treat the exchange field as equivalent to a magnetic field HE. The 

magnitude of the exchange field may be as high as ‘Ὄ ρπὝ.  

Å In the mean-field approximation we assume each magnetic atom 
experiences a field proportional to the magnetization:    
     Ὄ ὃὓ (18) 

where A is expressed as A=2zJex/(N(gmB)2) by quantum treatment. 

Å Consider the paramagnetic phase: an applied field H will cause a finite 
magnetization and this in turn will cause a finite exchange field HE.  
Effective field is a sum of applied field H and exchange field HE:   
    Ὄ Ὄ Ὄ   (19) 

Å Below Tc we use the complete Brillouin expression for the 
magnetization:  

ὓ NgmBJὄ Ǝm.IŜŦŦWὯὝϳ  

Å Spontaneous magnetization appears without applied field: H=0. By 
substitution we get  

ὓ .Ç‘ὐὄ ὃὫ‘ὄ ὐὓὯὝ
ϳ  (20) 

Å By assuming ὓ ὔὫ‘ὐ eq.(20) becomes 

ὓ ὓ ὄ ςᾀὐὐ ὯὝϳ ὓ ὓϳϳ  (21) 

 
 

Magnetization M 

Mean field from surrounding moments 

Fig. 18 Mean field 
approximation of Weiss 



ü Condition for existence of a spontaneous 
moment 

By substitution y=M/M0 and 
x=(2zJexJ

2/kT)M/M0,  eq.(21) becomes 
y= (kT/2zJexJ

2)x (22) 
y=BJ(x). (23) 

Fig.18  illustrates eqs.(22) and (23).  
The curves in Fig.18 represent eq.(23) 
for J=1/2, 3/2, 5/2, while lines in Fig.18 
represent eq.(22) whose slope is 
proportional to T.  
The lines rise up more steep for higher 
temperatures than for low 
temperature. 
Spontaneous magnetization appears 
when the curve (23) and the line (22) 
have an intersection. 

At low temperatures intersection 
exists since slope is small, while at 
high temperatures no intersection 
exists which leading to 
disappearence of spontaneous 
magnetization 

Fig. 19 Existence of a spontaneous moment in 
the mean-field theory 

x 

At low tempera
ures, Tc exists 

In this case Tc =0 
 

At high temperatures, Tc  does not appear 



Temperature-dependence of Magnetization 

ÅIn Fig.20 Magnetization 
obtained from intersections 
using Fig.19 for different 
temperature.  

ÅExperimental M-T curves of 
Most ferromagnetic materials 
can be explained by the mean-
field theory of Weiss, even 
they are itinerant magnets. 

Fig .20 Temperature  dependence 

of spontaneous magnetization  

Experimental  values are¥ Fe, 

ƨNi,  ƦCo. 

Curves are plots for J= S=1/2,1,Ð 



üCurie Weiss Law 

The susceptibility c =M/H of a paramagnetic 
material, in which no interaction exists between 
ƳŀƎƴŜǘƛŎ ƳƻƳŜƴǘǎ Ŏŀƴ ōŜ ŜȄǇǊŜǎǎŜŘ ōȅ /ǳǊƛŜΩǎ  
     c=C/T.  (24) 
Therefore if the line of 1/ c is plotted against T 
intersects at the origin the material is paramagnetic. 
Above the Curie temperature  of a ferromagnetic 
material the magnetic moments fluctuate randomly 
leading to paramagnetism.  
In this case susceptibility is given by the Curie-Weiss 
lawas follows 
c =C/(T-qp). (26) 

Here qpis ŎŀƭƭŜŘ άǇŀǊŀƳŀƎƴŜǘƛŎ /ǳǊƛŜ ǘŜƳǇŜǊŀǘǳǊŜέΦ 
In this case 1/ c plots against T passes through Y-
axis at qp. If the value is positive the material is 
ferromagnetic, while if it is negative the material is 
antiferromagetic. 
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Fig.21 Curie law and Curie Weiss law 

Temperature T (K) 



ü Explanation of Curie Weiss Law by Mean 
field Approximation 

ÅEffective field is expressed by eq.(19) 
Ὄ Ὄ Ὄ  
Ὄ ὃὓ 

ÅIn T>Tc Curie law is satisfied for effective field: 
… ὓ Ὄϳ ὓ Ὄ Ὄ ὅὝϳϳ   

Here C is a constant. 
From two equations we get 

ὓ Ὄ ὃὓ ὅὝϳϳ  

from which ὓ ὅὌ Ὕ ὃὅϳ  is obtained.  
Then paramagnetic moment can be written as  
… ὓ Ὄϳ ὅ Ὕ ɡϳ   (27) 

Here ɡ ὃὅ is paramagnetic Curie temperature. 

 



MYSTERY OF MAGNETICS 
 

Hysteresis and Coercivity 



WHAT IS HYSTERESIS? 



ü Magnetic Recording and Hysteresis 

Å In the computer storage HDD (hard disk 
drive) is used, in which information is 
recorded on a circular magnetic medium. 

Å Fig.22 shows an MFM (magnetic force 
microscope) image of recorded states, 
showing arrays of magnetic poles N and S  
aligned along the circumference on the disk 
surface.  

Å Schematically permanent magnets with 
different NS direction align along the 
circumference with a magnetic moment 
directed perpendicular to a disk surface. 

Å The mechanism of magnetic recording is 
supported by the hysteresis of the magnetic 
recording medium. 

ᶫ4.2 ḉ ǵ ╛
ᶫ 

Fig. 22 MFM image of recorded domains on 
the perpendicular recording disk 
Courtesy of Prof. Futamoto (Chuo Univ.) 

Fig. 23 Schematic illustration of recorded 
domains on perpendicular recording disk. 



Magnetic Hysteresis Curve 

ÅFig. 24 provides a typical 
hysteresis curve of 
magnetization against 
applied magnetic field. 

ÅSince hysteresis loop 
provides two values at zero 
field a magnetic recording is 
possible by assigning the 
two values to 1 and 0. 

Fig. 24 A typical hysteresis curve of a 
ferromagnetic material 
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Hysteresis curves in ferroelectric materials 

Å Hysteresis is also observed between 
polarization P and electric field E in 
ferroelectric materials.   

Å Fig.24 shows a dielectric hysteresis loop in a 
ferroelectric materials TGS. In this figure 
vertical axis represents an electric 
displacement D=e0E+P and horizontal axis is 
electric field. 

Å A ferroelectric memory device (FeRAM) 
makes use of residual polarization Pr to 
record information.  

Å The material has two different stable states 
with a potential barrier between two states. 
Transition between the states needs to 
surpass the potential barrier. Such a 
situation ƛǎ ŎŀƭƭŜŘ άbistableέ ŀƴŘ Ƴŀȅ ǎƘƻǿ 
a hysteresis.  

Fig. 24 A typical hysteresis curve of a 
ferroelectric material 

 
 



Hysteresis in mechanical system 

Å Hysteresis phenomenon can be also 
observed mechanical system. Gear 2 
follows Gear 1 when Gear 1 is 
rotated toward left, but follows after 
ǘƘŜ άōŀŎƪƭŀǎƘέ ǿƘŜƴ ƛƴǾŜǊǎŜƭȅ 
rotated.  

Å This system is also bistable since two 
states (Gear 1 is attached to right 
wall and left wall of Gear 2) with a 
threshold of the backlash. 

Fig .25 Gears show hysteresis  

Etymology of ƘȅǎǘŜǊŜǎƛǎέ ƛǎ ŀ DǊŜŜƪ ǿƻǊŘ ŜȄǇǊŜǎǎƛƴƎ ŀ ŘŜƭŀȅΣ 
meaning a slow response. Hysteresis is often confused with history. 

Gear 1 

Gear 2 


