磁気光学効果•光磁気効果

1．はじめに

 と光と确気の最近の展開を取り上げる。

2．磁気光学効果の基礎と応用。

2.1 磁気光学効果とは

物質に外部磁易を印加すること，あるいは，物質に磁化が生じることによって現れる光常狧性を磁気光学妨果という。

図 1 （a）ファラデー巴置と（b）フォークト目置

图2 ファラデー勏果

图3（a）白詻施光供と（b）ファラ テー効果

料の辰きしに比侧する。すなわち

$$
\begin{equation*}
\theta_{g}=V H l \tag{1}
\end{equation*}
$$

道の場合の 2 倍になる。

 ファラデー効果の上さを表すには，減裏量あたりの回較角を性施指数として用いる。
 る。（a）のように，反哩面の法線方問と曝化の方間が平行な場合を梄カー效果という。（b）のように，

表 代表的な群值体のファラアー始梁

物簤名	比垓光角 （deg／cm）		可定涼長 （ nm ）	$\begin{aligned} & \text { 酒 } \\ & \text { (K) } \end{aligned}$	倒場 （T）
Fe	3.825×10^{5}		578	室湿	2.4
Co	1.88×10^{5}		546	建湆	2
Ni	1.3×10^{5}		826	120 K	0.27
$\mathrm{Y}_{5} \mathrm{Fe}_{5} \mathrm{O}_{12}$	250		1150	100 K	
$\mathrm{Cd}_{2} \mathrm{BiF6} \mathrm{c}_{2} \mathrm{O}_{12}$	1.01×10^{4}	44	800		
MnSb	28×10^{5}		500	窝温	
MnBi	5.0×10^{6}	1.43	633	事温	
YFeO_{3}	4.9×10^{3}		633	室睌	
NdFeO_{3}	4.72×10^{4}		633		
CrBr_{3}	1.3×10^{5}		500	1．5K	
EuO	5×10^{6}	10^{4}	660	4.2 K	208
$\mathrm{CdCr}_{2} \mathrm{Se}_{4}$	3.8×10^{9}	35 （80K）	1000	4 K	0.6

方向によって屈折率が異なる现像て，これによって光学選廷（リターブーション）が生せあ。この効果
二次の開數である。

2.2 磁気光学効果の現象論 ${ }^{\text {2 }}$

2．2．1 光学活性の起源

箯光倠と円二色性をあわせて光学话惟と呼房方，左右円沷光に対する物質の光学応答が界なることに
湾について迹べる。

直總侷光は，图5（a）に示すように右川漏光と左以偏光に分解てきる。この光が長き1の物質を透過し
梗いた直緗俥光となり，その㮩を θ_{F} は，

$$
\begin{equation*}
\theta_{V}=-\left(\theta_{\mathrm{IL}}-\theta_{\mathrm{L}}\right) / 2=-\Delta \theta / 2 \tag{2}
\end{equation*}
$$

となる。ここに $\theta_{\text {は }}$ は右円但光の位相，θ_{L} は左円作光の位相である。

$$
\begin{equation*}
\eta_{r}=\left(E_{\mathrm{R}}-E_{\mathrm{L}}\right) /\left(E_{\mathrm{R}}+E_{\mathrm{L}}\right) \tag{3}
\end{equation*}
$$

图5 竝光位と円二色性の起源
后る。

 したべクトルは棈円䛧兆になる。
襍円作光になる。
差は，右円侷光に対方る属折率 n 。と右円侮光に対する屎折率 n の差 Δn によって生じる。

$$
\begin{equation*}
\theta_{p}=-\Delta \theta / 2=-\omega\left(n_{+}-n\right) l / 2 c=-\pi \Delta n l / \lambda \tag{4}
\end{equation*}
$$

左円傌光の消光你数を と．とすると，

$$
\begin{align*}
& \eta_{r}=\frac{\exp \left(-\omega \kappa_{1} / / c\right)-\operatorname{cxp}(-\omega \kappa(/ c)}{\operatorname{cxp}\left(-\omega K_{1} t / c\right)+\operatorname{cxp}(-\omega K(/ c)} \tag{5}\\
& =-\pi \Delta \kappa(/ \lambda
\end{align*}
$$

となる。ここに $\Delta \kappa=\kappa_{+}-\kappa$ である。

2．2．2 磁化を持つ物質の光学活性と咦電审テンソル

光の電場 E 加印加ぎれたときに物質に生じる菓束檻废を \boldsymbol{D} とすると， \boldsymbol{D} と \boldsymbol{E} の関係は

$$
\begin{equation*}
D=\varepsilon_{0} \bar{E} E \tag{6}
\end{equation*}
$$

數 $\tilde{\varepsilon}_{r}$ は 2 際のテンソルで表きれる。
オンサガーの定理により然方性楽質が z 方向の磁化を持つをき，その比䛾電事をは次式のテンソルて表される。

$$
\bar{\varepsilon}=\left(\begin{array}{ccc}
\varepsilon_{x x} & \varepsilon_{x y} & 0 \tag{7}\\
-\varepsilon_{x y} & \varepsilon_{x x} & 0 \\
0 & 0 & \varepsilon_{x z}
\end{array}\right)
$$

 スウェル方䅐式を解くと，複素属折率 $N(=n+i k)$ の固有值として，次の 2 つのあのを䄍る。

$$
\begin{equation*}
N \pm^{2}=\varepsilon_{\alpha a} \pm i \varepsilon_{v y} \tag{8}
\end{equation*}
$$

 とが搏加れる。

もし，$\varepsilon_{n g}=0$ であれば，$N+=N$ と変り，左右円伲光に対する楽算の応答の仕方が等しくなり光学活倠は生しないので，非対角成分 $\varepsilon_{\mathrm{xf}}$ が光学活性のもとであることが理解きれる。

$$
\begin{equation*}
\Delta N=i \varepsilon_{x y} / \sqrt{\varepsilon_{x x}} \tag{9}
\end{equation*}
$$

用いると，2．2．3に水すようにファラデー効果を話電率で表すことができる。

2．2．3 ファラデー奻果を諑電事で表す

$$
\begin{equation*}
\Phi_{F}=\theta_{y}+i \eta F=-\pi / n l / \lambda-\pi i A n I / \lambda=-(\pi / / \lambda)(A N)=-(i \pi / / \lambda) \varepsilon_{x y} / \sqrt{\varepsilon_{x x}} \tag{10}
\end{equation*}
$$

 ことに注意きれたい。
施光角 θ_{F} と棤円率 η_{F} を刟々に求めると，

$$
\begin{align*}
& \theta_{p}=-(\pi l / \lambda)\left(\kappa \varepsilon_{v}{ }^{\prime}-n \varepsilon_{z y}{ }^{\prime}\right) /\left(n^{2}+\kappa^{2}\right) \\
& \eta_{F}=-(\pi / / \lambda)\left(n \varepsilon_{\gamma_{y}}+\kappa \varepsilon_{v_{g}}{ }^{\prime \prime}\right) /\left(n^{2}+\kappa^{\prime}\right) \tag{11}
\end{align*}
$$

透明な林体では消光係数 x はゼロなのて，式（11）は籣単になって，

$$
\begin{equation*}
\theta_{F}=(\pi l / n \lambda) \varepsilon_{x y}{ }^{\prime \prime}, \quad \eta_{F}=-(\pi l / n \lambda) \varepsilon_{x_{y}}{ }^{\prime} \tag{12}
\end{equation*}
$$

2．2．4 磁気カー幼果を䛾電事で表す

素で表すと近俆的に次式で表きれる。

$$
\begin{equation*}
\Phi_{K}=\theta_{K}+i \eta_{K}=\frac{n_{0} \varepsilon_{x y}}{\left(n_{0}^{2}-\varepsilon_{x x}\right) \sqrt{\varepsilon_{x x}}} \tag{13}
\end{equation*}
$$

ここに，n_{0} は入討する楠の站筫の用折率である。

 ことである。

2.3 磁気光学効果の微視的起源 ${ }^{*}$

2．3．1 磁気光学勃棵の古典電子隃

$$
\begin{align*}
& \varepsilon_{x x}=\frac{n q^{2}}{m} \cdot \frac{\omega^{2}-\omega \omega_{0}^{2}+i \omega / \tau}{\left(\omega^{2}-\omega_{0}^{2}+i \omega / \tau\right)^{2}-\omega^{2} \omega_{\varepsilon}^{2}} \\
& \varepsilon_{x y}=\frac{n q^{2}}{m} \cdot \frac{-i \omega \omega_{c}}{\left(\omega^{2}-\omega_{0}^{2}+i \omega / \tau\right)^{2}-\omega^{2} \omega_{c}^{2}} \tag{14}\\
& \varepsilon_{n z}=1-\frac{n q^{2}}{m} \cdot \frac{1}{\omega^{2}-\omega_{0}^{2}+i \omega / \tau}
\end{align*}
$$

ここに，$\omega_{c}=|q B / m|$ はサイタトトロン角周波数，τ は電子の散㣽の皧和時周である。
編䢙半導体のマダネトブラスマ共鳴などについてはこのような考え方で実倹を談明できることがわ

 ちることはできない。この周䖧を解决に渾いたのは次に退べる量子闌であった。

2．3．2 認電事の量子陯

 て生じていることがわかる。话両率は，高周波の電場という掑邪を加えたとまに雨気分樗がとのような友答を示すかな与えるものである。
棱）と負電傳（軍子震）の分布の中心が一较している。

 で䉓気分梗もそれに合わせて橓野少る。

2.3 .3 磁化がある場合の識電审の量子检

効果は生じない。

 て生じる。 $L_{x}= \pm 1$ の状焽は国优する䉓子状想を表す。

事本のスベクトル料状

電率の非対筒成分は，

$$
\begin{equation*}
\varepsilon_{x y}(\omega)=\frac{i N_{0} q^{2}}{2 m \varepsilon_{0}} \sum_{n} \frac{\omega_{n 0}\left(\left(f_{+}\right)_{n 0}-\left(f_{-}\right)_{n 0}\right\}}{\omega\left\{(\omega+i / \tau)^{2}-\omega_{n 0}^{2}\right\}} \tag{15}
\end{equation*}
$$

度で，

$$
\begin{equation*}
\left(f_{L}\right)_{n 0}=\frac{m \omega_{n 0}|(0|x \pm i y| n)|^{2}}{h e^{2}} \tag{16}
\end{equation*}
$$

式（12）を通して棌簐事の非対角成分をもたらす。

2．3．4 バンド電子系の磁気光学朝果

 ねばならない。なぜなら，d電子はもはや原子の状熊と同㥞の局在準位ではなく，空間的に広がって， ハンド状態になっているからである。この場合，バンド計算によってバンド状賏の围有㯖と園有閶数と を求わ，久保公式に基づいて分敨式を計算することになる。k－空間の各庶にないてバンド計算から䢞移

エネルギーと退移行列を求か，すべての k についての和をとる必震がある。
金属では比話雨率テンソルに代文て導輝率テンソルずを用いる。

$$
\dot{\sigma}=\left(\begin{array}{ccc}
\sigma_{x y} & \sigma_{x_{y}} & 0 \tag{17}\\
-\sigma_{z y} & \sigma_{z} & 0 \\
0 & 0 & \sigma_{n}
\end{array}\right)
$$

テンソルの成分 $\sigma_{\alpha \beta}$ は

$$
\pi=\rho+\frac{\pi}{4 m c^{2}} \sigma \times \nabla V(r)
$$

て定義される遇動量演算子を用い次式て表される。

$$
\begin{align*}
& \sigma_{\omega s}=\frac{i N q^{2}}{\omega+i \gamma}\left(\frac{1}{m^{*}}\right)_{0}-\frac{2 i q^{2}}{m^{2} \hbar} \\
& \times \sum_{u=1}^{\pi} \sum_{=1}^{\pi}\left(\frac{\omega+i \gamma}{\omega_{\alpha}} \operatorname{Re}\left(\langle l| \pi^{n}|n\rangle\left\langle\left(n\left|\pi^{s}\right| l\right\rangle\right)+i \operatorname{lm}\left(\langle l| \pi^{n}|n\rangle\langle n| \pi^{s}|l\rangle\right)\right) \frac{1}{\omega_{\alpha}^{\prime}-(\omega+i \gamma)^{2}}\right. \tag{18}\\
& \alpha, \beta=(x, y)
\end{align*}
$$

$$
\begin{equation*}
\langle l| \pi^{\alpha}|n\rangle=\frac{(2 \pi)^{3}}{\Omega} \int u_{i} *(k, r)\left[p^{\alpha}+\frac{\hbar}{4 m c^{2}}(\sigma \times \nabla V(r))_{a}\right] u_{n}(k, r) d^{3} r \tag{19}
\end{equation*}
$$

という式で表きれる。式（18）の第 1 項は，有効賢量の異方性によるもので以後歓視する。
対角成分の実数部は散乱寿命を制限大とすると，

$$
\begin{equation*}
\sigma_{n=}^{\prime}=\operatorname{Re}\left(\sigma_{n}\right)=\frac{\pi q^{2}}{m m^{2} h} \sum_{n}^{2} \sum_{n=1}\left|\left(t\left|\pi^{-}\right| n\right\rangle\right|^{2} \delta\left(\omega-\omega \omega_{n}\right) \tag{20}
\end{equation*}
$$

碚気光学に寄与する非対角成分の豦数部は，

$$
\begin{align*}
& \sigma_{v j}^{*}(\omega)=\operatorname{lm}\left(\sigma_{\omega}\right)=\frac{2 q^{2}}{\operatorname{An}^{2}} \sum_{i=1}^{n} \sum_{n=2} \frac{\left.\operatorname{lm}\left(\langle l| \pi \pi^{\prime} \mid n\right)\left(n\left|\pi^{\prime}\right| \eta\right)\right)}{\omega j_{j}^{j}-(\omega+i \gamma)^{2}} \tag{21}
\end{align*}
$$

ここで，$\pi^{+}=\pi^{\kappa} \pm i \pi^{\gamma}$ を導入すると，式（21）は

$$
\begin{equation*}
\left.\sigma_{n}^{*}(\omega)=\operatorname{lm}\left(\sigma_{n}\right)=-\left.\frac{\pi q^{2}}{2 n^{2} h \omega} \sum_{s,}^{\infty} \sum_{n=1}^{\infty}\left(\left|\langle l| \pi^{*}\right| n\right\rangle\right|^{2}-\left.|\langle || \pi^{*}|n\rangle\right|^{2}\right\rangle \delta\left(\omega-\omega_{\mu s}\right) \tag{22}
\end{equation*}
$$

と書ける。
また，スビン㑑榵を考慮すると $\sigma_{x y}^{*}=\sigma_{x y}^{*} \uparrow+\sigma_{x y}^{*}+$ となり，†スビンに対少る非对角遵電率と \downarrow スビ

式（22）に従ってすべての k について和をとればよい。
 たい。

式（22）を積分形になおちと次式を得る。

$$
\begin{equation*}
\omega \sigma_{*}^{*}(\omega)=\frac{\pi q^{2}}{2 m^{2}} \cdot \frac{1}{8 \pi^{1}}\left[F_{n}^{\prime}(\omega) \delta\left(\omega-\omega_{\beta_{s}}\right) d^{t} k\right. \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left.\left.F n l(\infty)=\left|\langle n \dagger| \pi^{-}\right| \dagger 1\right\rangle\left.\right|^{2}-\left|\langle n \dagger| \pi^{+}\right| \dagger l\right)\left.\right|^{2}+\mid\langle n \dagger| \pi^{-}|\dagger \phi|^{2}-\left|\langle n \dagger| \pi^{+}\right| \dagger D\right)\left.\right|^{2} \tag{24}
\end{equation*}
$$

$$
\int r_{b}(\omega) \delta\left(\omega-\omega_{\infty}\right) d^{2} k=\bar{r}_{\omega} \int \delta\left(\omega-\omega_{v}\right) d^{2} \hbar
$$

によって定事し， $\bar{F}_{n t}$ が大きな ω 依存惟を接たないと位定し一定䈯 $F_{s l}$ と书くと式（23）は籣単になって，

$$
\begin{equation*}
\omega \sigma_{v}^{*}(\omega)=\frac{\pi q^{2}}{2 m^{2} \hbar} F_{\omega}^{\prime \mu} \omega_{\omega l}(\omega) \tag{25}
\end{equation*}
$$

 と非占有状盟の状啲室度のたたみこみを示していあ。
光に対する結合状賏害度 $j_{M /}^{ \pm}(\omega)$ を

$$
F_{n i}^{ \pm} j_{n j}^{ \pm}(\omega)=\frac{1}{B \pi^{3}} \int F_{n i}^{ \pm}(\omega) \delta\left(\omega-\omega_{i n}\right) d^{3} k
$$

で定弮すれば，

$$
\begin{equation*}
\omega \sigma_{x y}^{*}(\omega)=\frac{\pi q^{2}}{2 m I^{2} \hbar}\left(F_{n J}^{\sim} J_{n I}^{-}(\omega)-F_{n j}^{*} /{ }_{n d}^{*}(\omega)\right) \tag{26}
\end{equation*}
$$

 $J_{N^{*}}{ }^{\prime}(\omega)$ と $J_{n^{\prime}}(\omega)$ の分布の重心に差があれば，磁気光学効楽を生じることが示それる。园10（a）に示方 ように磁化が存在しないと左門伲光による摆移と右円作光による透移は完全に打ち消しぁう。この詰

图12 光アインレー多ーの基本続成

積に比例する量となっている。

2.4 磁気光学効果の応用

 （4）空聞磁気光学変高器，（5）イメーシングなどに応用されている。

2．4．1 計洌－臨測手殿

可梘•第外知城の确気光学スベクトルが有効であることは碚性半溥体 $\mathrm{CdCr}_{3} \mathrm{Se}_{4} \mathrm{Cd}_{1-2} \mathrm{Mn}, \mathrm{Te}, \mathrm{GaAs:Mn}$ ， $\mathrm{TiO}_{8} \mathrm{Co}, \mathrm{ZnTe} \mathrm{Cr}$ などで実跭されている。真に磁性半遵体であるかとうかの籼断基期として磁気円二色珄 MCD を用いることか提喟されている。

2．4．2 光磁気アイソレーター

碳気光学伤果が最も実用きれているのが，その非相反性を用いて光を一方通行にする蒌気光学アイン

レーザーへの入时を师えるために不可久な光コンボーホントとなっている。光多重通信に拈ける光ファ

このほか，光サーキュレーター，可変光アッチネーター，光スイッチなどの光通俗用のコンネ゚ーネン
 ホーホントへの実装を念䫟に入れた超小型導波路型アインレーターの研宛が行われている。

2．4．3 光磁気記緑の再生

1990年代に開発さえてーケットに投入光れた光磈気ディスク，ミニティイスタは，磁性物理の䉽を集

技術は，ハードデイスクの高密度化を目指方光フシスト磁気記緑（HAMR）に活かされている。

2．4．4 空同光変明哭 ${ }^{5}$

空間光素䖝器（SLM）には通常液品が用いられるかさ，必答速度が運く，分解能も上がらないという

图 16 直稚 $500 \mu \mathrm{~m}$ の MgB_{2} 円放への楢束侵入の鳃気事学イメージク
 ること，きらにビエソ素子と組み合わせることによって電圧で制甸できることを発表した。強詩電体と

2．4．5 空間像車生用光変調デバイス ${ }^{*}$

 む。このための波面再生方式のひとつとしてスビン空間変間（スビンSLM）によるホロダテム再生が

 る。これにレファレンスの直線作光を㹉射し3Dホロタラムの䭹像を再生する。

2．4．6 イメージンク

 ングすることが行われている。
電流の大ききを見積もりイメージングすることも可龍になっている。

2.5 近接場磁気光学効果 ${ }^{*}$

 メージンダでは，回折网界以下の散細惦造を制洞すること放てきる。

2.5 .1 近接埸とは

波長よりはるかに做小な物質の近傍には，空間周洨数の高い電碚場分布があるが，この場はエバネッ セント場と時ばれ，物質から違ざかると指数閶数的に琙少してしまう。したがって，2つの機小物体を

相互作用（エバネッセントカップリンタ）が生じふ。一方の物体方光当であり，他方が梖出器であれ ば，物体間での電群エネルギーの移物が起きる。これは，物体間での光励起のトンネル現象と見ること ができる。

2．5．2 近接場の発生と検出

 を模式的に表したのが園 18 である。エバネセント光の作る近接場の中に制那したい対象を做くと，光
物体を钼諨ずることができる。

 イバーブローブを全反射光学䨿と組み合わせ，散乱光検出に用いるのが図19（b）の集光モードSNOM である。

图21 $\mathrm{Fe}(2 \mathrm{ML}) / \mathrm{Ni}(6 \mathrm{ML}) / \mathrm{Pd}$ 漛における原子特定

部すれぼ，回折限界以下の滄城の磪気光学効果が調定できる。

このほか，探针にレーザー光を咸射し，その先䝺付近にできる近接塭を用いるケバーチャーレス SNOM あ開発されている＂。

2.6 放射光を用いた群気光学効果 ${ }^{1+1}$

2．6．1 X 䜌嗢気円二色性（XMCD）

 スベクトルである。これより Fe と Ni のスビン蒌気モーメントはそれそれ， $2.588 \mu_{\mathrm{m}} .0 .736 \mu_{\mathrm{n}}$ であるこ と，輌道磪気モーメントの垂面成分は，それぞれ， $0.343 \mu_{\mathrm{B}}, 0.127 \mu_{\mathrm{B}}$ であることなどが求められてい及 ${ }^{m}$ 。

2．6．2 XMCD 鿓综鏡

 ル帯板の一教であるコンデンサ・ゾーン・ブレート（CZP）を用いてサプミクロンのサイズにまで集光

2．6．3 X 線自由電子レーザー（XFEL）による磁化ダイナミクスの觀測

 100 ± 25 fs で先に起きたのち，Gd の磁化反栕が時定数 430 ± 100 fs で起きる。 Gd と Fe の㜢気モーメン

2.7 非線形磁気光学効果 ${ }^{14}$

これまで达へた確気光学効果はすくで線形の効果，つまり，入射光と同し没畏の出射光についての碰

この场合の液舠方程式は，表面に非裉形分榡 $P^{(x)}(2 \omega)$ が存在してこれがソース項としてはたらくと考えて，次式のように表すことができる。

$$
\begin{equation*}
\operatorname{rotrot} E(2 \omega)+\frac{\varepsilon}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E(2 \omega)=-\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial^{2}}{\partial t^{2}} p p^{(2)}(2 \omega) \tag{27}
\end{equation*}
$$

簐囲できの i 成分 $P l^{(\#}$ は，

$$
\begin{equation*}
P_{i}^{(2)}(2 \omega)=\chi_{i j k}^{(2)}(2 \omega ; \omega, \omega) E_{j}^{(1)}(\omega) E_{k}^{(1)}(\omega) \tag{28}
\end{equation*}
$$

のように表される。 $E j^{i \gamma}, E k^{(1)}$ は一次光の電界の j, k 成分，$x_{i j k}^{(2)}(2 a k \omega, \omega)$ は 2 次の非䌐形感要事テンソ
従り。

よく知られているように Fe，Co など反転対称性を持つ物筫にないては，3 階のテンソルはぜロとな

 て，化に体存なる确气気誘起SHG（MSHG）が見られる。

称に可きを変える。この効果のことを非線形絬気力一刘果（NOMOKE）という。
 ができる

$$
\begin{equation*}
\tan \psi_{K}^{(z)}=i\left(\frac{x^{(2) \text { odd }}}{x^{(2) e v e n}}+\dot{\vec{n}}\right) \tag{29}
\end{equation*}
$$

俚項（Mについて偶），後者は碚性項（Mについて奇）である。
回転は入射角を小さくしたとき 80° にも違することが朝告ぎてている ${ }^{\text {² }}$ 。

 りかなり小さいのに対し，非線形力一効果は式（29）に示したように $\chi^{(2) o d d} / X^{(2) e v e n}$ という比で与えら

区 25 （a） Fe 表雨の總形機力一回鉩有の入时扁侅

 どていることに順因していると考えられている。
工格子の吥究に久くことのてきない技楊になりつつある。

图 26 は，反強桃性体 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ の SHG 迪度の過度体存惟である。ネール温度（ T_{N} ）以下では SHG 強度
答は逆転する ${ }^{16}$ 。

3．光磁気効果 ${ }^{\text {¹ }}$

3.1 光磁気効果の量酲

（1）光活起砤气気奴果
 のTeale，Temple らによって発見きれた。この効果はその後オランダのEnz らによって評細に研究さ

放，電子正孔対の再結合なとが考えられる。
（2）光詩起化
ビックフップコイルを卷いた常酸性体に共鳴する波長のバルスレーザーを照射すると，ビックアップ コイルに電圧パルスが験起それる。唃磁性体としては，最初の実験はルビーについて行われた。卧射は

 ていると考えられる ${ }^{21)}$ 。
（3）兆診起スヒン平远列
RCrO_{3}（希土整オーソクロマイト）は反貟棲性体であるか，不等狧な 4 つの Cr サイトを有し， 4 開絡子（sublattice）からなる複雄なスビン棈造を有する。このうちの $1 つ \mathrm{ErCrO}_{3}$ は， 9.7 K 以下で反矤

 ストリークカメラによるスベクトル總の分装の変化を制䚯することにより明らかにされた＂。
（4）照酸気妨果
（1）過度語起酸化反転効果
レーザー光黒射によって，局所的にキュリー遈度以上に加鰓すると磁化を失う方，票射を止めると反

（2）迢度话廷スヒン再慁列効果
現彔を利用したらのに光モーターが知られている。これは，磁界中にむいた希土制オーソフェツイトな
 するというものである。

3.2 光磁気効果の応用

（1）光程気記沊

图27 䑤アシスト紀綜悉图 ${ }^{24}$

 いる。

装直加祭雜になるため，市場亦ら消えた。
（2）熱ブシスト磼気記緑
 なっていくと，精子の異方性酸気エネルギー $K_{\mathrm{s}} V\left(K_{\mathrm{u}}\right.$ は単位作積あたりの酸気異方性エネルギー，V

 る。
ハードディスタの都解の䇩囲でデータが安定であるための条件は，$\eta=K_{\mathrm{a}} V / k T$ というバラメータが 60 以上なければならないとされている。敉経 d が小さくなると，記解きれあ粒子の体積 V はほほ d^{3} に

しかし，垂直酸気記録によっても面記鉛害庭は $1 \mathrm{TGb} / \mathrm{in}^{2}$ でととまっている。保迷力を大きくすれば

技糹を使》ことである。室温付近では大きな H_{c} を示すが温度上畀によって通常の站気へッドで記解て
 である。
度 T_{e} 付近まで加槃すると保䡴力加焦下するため，保酸力の大きな葉体（異方性エネルギーの大きな葉

 み取る ${ }^{20}$ 。

（b）カー回联スペタトゥ

4．光と磁気の最近の展開

4.1 光によるスピン制御

状警が回後する。この振畅は量子ビートとして現れる。コヒーレンス時周は1nsて，ビート周洨数は買左性エネルギーによって決定される ${ }^{\text {s }}$ 。

最近，スヒンホール坟果（SHE）の光子段である光スヒンホール姆果（SHEL）加挸明ぎむた。スビ

移するさまず見いだきれている

4.2 トポロジカル・スビントロニクスと磁気光学

 つある。

600 mm 付近にビークを示す。第一原理計算により樹力一効果のスベクトルを図28（c）に示す。この物
 $0.005,0.025 \mathrm{~m} \mu_{9} / \mathrm{fu}$. となるようにスビンを半ャントぞせた磷気構造を仮定して計算した結果，磪化が

5．おわりに

 らに，スビントロニクスの造展は，光とスヒンという考えに立って，新しい共閣を見せつつある。本稿 が，この分䡃に居を畨み入れつつある初心者の手がかりになれば幸いである。

文 触

 （2001）．
朝侖㡽底（2001）
 （2）（2001）．
4）A．Tsukamoto et al：J ．Ag\＄p．Phess，109， 07 D008－1－3 （2011）．

7）T．Ishilhashi et al：Physica C Suppresmdartitios．468，（15－ 20）， 1313 （2005）．

9）Y．Caí f，Mug．Soc．Jon．， $38(3-2), 127$（2014），

11）L．Yamamoto et al：Phys．Row，B，81， 214442 （2010），
12）小男宽大：J．Vac．Sac．Jouc 50.317 （2006）。
13）I Radu et al：Nafure，472， 205 （3011）．

15）Th．Rasing et al：J．Atpl．Phys．T9． 6181 （1996），
16）M．Fiebig et al：Apk．Phyn．Lett．， 662906 （1995）．
角責学（3001）。
出服（1978）
19）T．Tamakil and K．Tsushima J．Phys．Soc．Jour，45， 122 （1978）．

21）S．Haneda et al：／pee／．Apol．Phys．，3s， 1.9 （ 2000 ）．
22）T．Tumaki and K．Tsushimy／．Magn．Mage．Mater．，31－ 34， 571 （1983）．
弟闌查会（1973），

25）N．P．Doong et al：Phess．Res，Lett．， 93 （11）， 117408 （2014）．
26）M．Onoda et al：Phrs．Res．Lett， 93 （8）， 083901 （2014）．
27）J．Ren et al：Appl．Prys．Lett．101． 171103 （2012）．
28）Y．Okimsoto et al：Phos．Rex．Lett，169（2），（07002（2009）．

